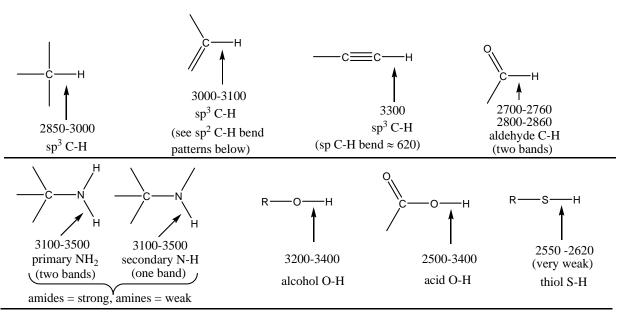
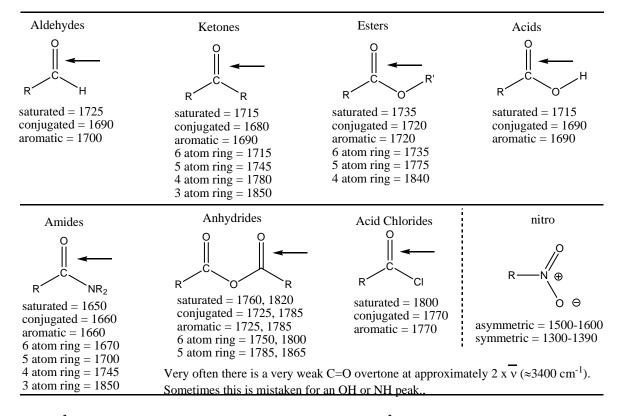

Infrared Tables (short summary of common absorption frequencies)

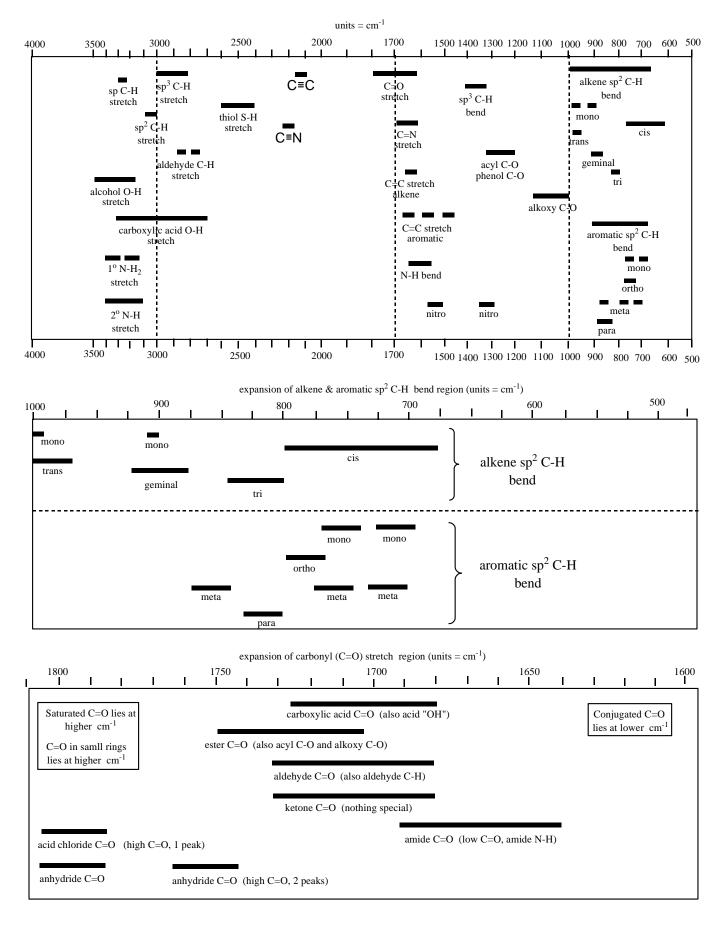
The values given in the tables that follow are typical values. Specific bands may fall over a range of wavenumbers, cm⁻¹. Specific substituents may cause variations in absorption frequencies. Absorption intensities may be stronger or weaker than expected, often depending on dipole moments. Additional bands may confuse the interpretation. In very symmetrical compounds there may be fewer than the expected number of absorption bands (it is even possible that all bands of a functional group may disappear, i.e. a symmetrically substituted alkyne!). Infrared spectra are generally informative about what functional groups are present, but not always. The ¹H and ¹³C NMR's are often just as informative about functional groups, and sometimes even more so in this regard. Information obtained from one spectroscopic technique should be verified or expanded by consulting the other spectroscopic techniques.


IR Summary - All numerical values in the tables below are given in wavenumbers, cm⁻¹

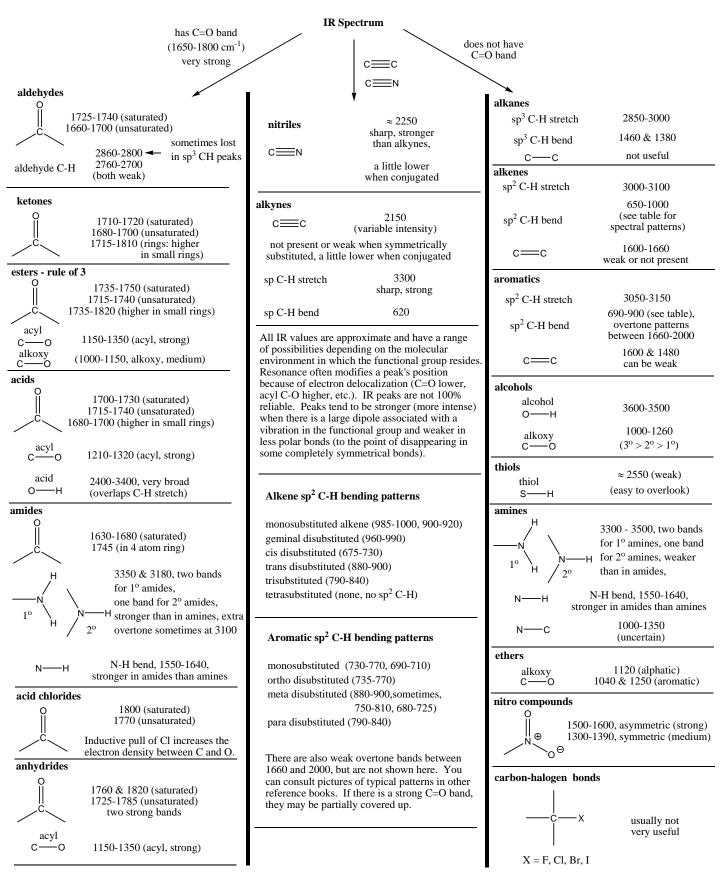

Bonds to Carbon (stretching wave numbers)

Stronger dipoles produce more intense IR bands and weaker dipoles produce less intense IR bands (sometimes none).

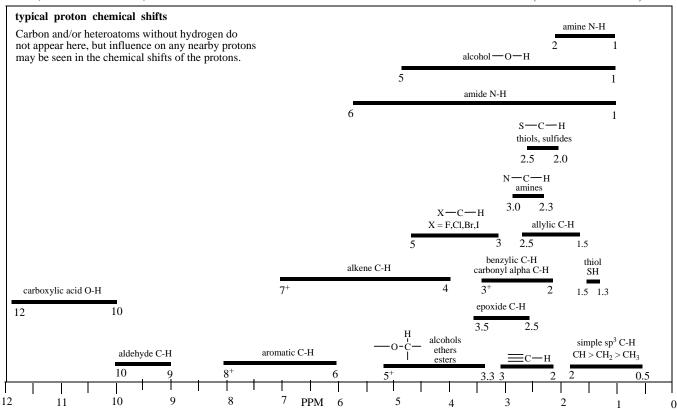
Bonds to Hydrogen (stretching wave numbers)

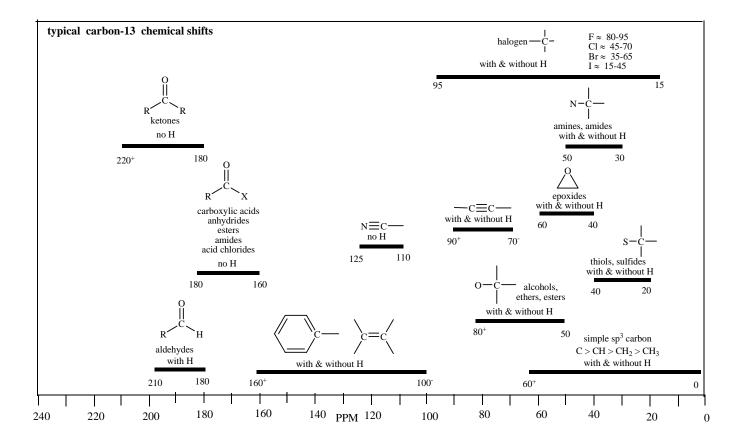

Z:\classes\spectroscopy\all spectra tables for web.DOC

sp² C-H bend patterns for alkenes

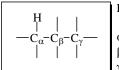

sp² C-H bend patterns for aromatics

alkene substitution pattern		absorption requencies (cm ⁻¹) ue to sp ² CH bend	aromatic substitution pattern	descriptive aromatic term	absorption frequencies (cm ⁻¹) due to sp ² CH bend
	monosubstituted alkene	985-1000 900-920	×	monosubstituted aromatic	690-710 730-770
	cis disubstituted alkene	675-730 (broad)	×	ortho disubstituted aromatic	735-770
	trans disubstituted alkene	960-990	×		
	geminal disubstituted alkene	880-900	×x	meta disubstituted aromatic	680-725 750-810 880-900 (sometimes)
	trisubstituted alkene	790-840	x	para disubstituted aromatic	790-840
	tetrasubstituted alkene	none	that show up betwe pictures for compa	ds have characteristic v en 1650-2000 cm ⁻¹). S rison (not here). A str ver up most of this regi	Some books provide ong C=O peak will

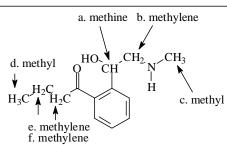

Spectroscopy Tables


IR Flowchart to determine functional groups in a compound (all values in cm⁻¹).

deshielding side = less electron rich (inductive & resonance) Typical ¹H and ¹³C NMR chemical shift values.


shielding side = more electron rich (inductive & resonance)

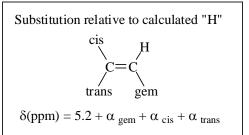
Spectroscopy Tables


Calculation of chemical shifts for protons at sp³ carbons

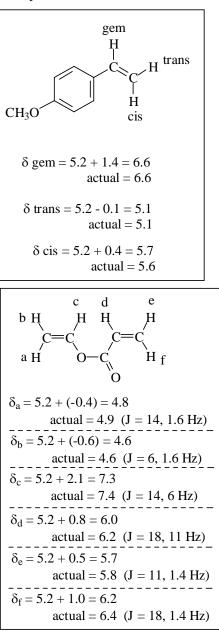
Estimation of sp³ C-H chemical shifts with multiple substituent parameters for protons within 3 C's of consideration.

 α = directly attached substituent, use these values when the hydrogen and substituent are attached to the same carbon β = once removed substituent, use these values when the hydrogen and substituent are on adjacent (vicinal) carbons γ = twice removed substituent, use these values when the hydrogen and substituent have a 1,3 substitution pattern

X = substituent	α	ß	v	Starting value and equations for CH ₃ 's
R- (alkyl)	0.0	0.0	0.0	
$R_2C=CR$ - (alkenyl)	0.8	0.2	0.1	$\delta CH_3 = 0.9 + \alpha H_3C - \alpha$
RCC- (alkynyl)	0.9	0.3	0.1	
Ar- (aromatic)	1.4	0.4	0.1	
F- (fluoro)	3.2	0.5	0.2	$\delta CH_2 = 0.9 + \Sigma(\beta + \gamma) \qquad H_2C - C_2 - C$
<u>Cl- (chloro)</u>	2.2	0.5	0.2	$\delta CH_3 = 0.9 + \Sigma(\beta + \gamma) \qquad H_3C - C_\beta - C_\gamma - $
Br- (bromo)	2.1	0.7	0.2	
<u>I- (iodo)</u>	2.0	0.9	0.1_	\sum is the summation symbol for all substituents considered
HO- (alcohol)	2.3	0.3	0.1	
RO- (ether)	2.1	0.3	0.1	Starting value and equation for CH ₂ 's
epoxide	1.5	0.4	0.1	Starting value and equation for CH ₂ 's
$R_2C=CRO-$ (alkenyl ether)	2.5	0.4	0.2	
ArO- (aromatic ether)	2.8	0.5	0.3	In a similar manner we can calculate chemical shifts
RCO ₂ - (ester, oxygen side)	2.8	0.5	0.1	for methylenes (CH_2) using the following formula
ArCO ₂ - (aromatic ester, oxygen side)	3.1	0.5	0.2	
ArSO ₃ - (aromatic sulfonate, oxygen)	2.8	0.4	0.0	$\delta \operatorname{CH}_{2} = 1.2 + \Sigma(\alpha + \beta + \gamma) \qquad \begin{array}{c} H \\ H - C_{\alpha} - C_{\beta} - C_{\gamma} - C_{\gamma$
H_2N - (amine nitrogen)	1.5	0.2	0.1	
RCONH- (amide nitrogen)	2.1	0.3	0.1	$ \qquad \qquad$
O_2N - (nitro)	3.2	0.8	0.1	Σ is the summation symbol for all substituents considered
HS- (thiol, sulfur)	1.3	0.4	0.1	Z is the summation symbol for an substituents considered
RS- (sulfide, sulfur)	1.3	0.4	0.1	Starting value and equation for CH's
OHC- (aldehyde)	1.1	0.4	0.1	
RCO- (ketone)	1.2	0.3	0.0	
ArCO- (aromatic ketone)	1.7	0.3	0.1	In a similar manner we can calculate chemical shifts
HO ₂ C- (carboxylic acid)	1.1	0.3	0.1	for methines (CH) using the following formula
RO_2C - (ester, carbon side)	1.1	0.3	0.1	
H_2 NOC- (amide, carbon side)	1.0	0.3	0.1	$\delta CH = 1.5 + \Sigma(\alpha + \beta + \gamma) \qquad \begin{matrix} n \\ l \\ -C_{\alpha} - C_{\beta} - C_{\gamma} - \end{matrix}$
ClOC- (acid chloride)	1.8	0.4	0.1	$-c_{\alpha}-c_{\beta}-c_{\gamma}$
NC- (nitrile)	1.1	0.4	0.2	
RSO- (sulfoxide)	1.6	0.5	0.3	Σ is the summation symbol for all substituents considered
RSO ₂ - (sulfone)	1.8	0.5	0.3	

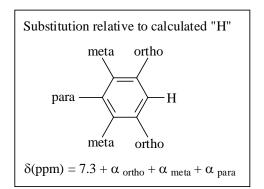

a. methyl = $0.9 + (1.5)_{\alpha} + (0.1)_{\gamma} = 2.5$ ppm d. methyl = $0.9 + (0.1)_{\alpha} = 1.0$ ppm actual = 2.6actual = 1.0b. methylene = $1.2 + (1.5)_{\alpha} + (0.4)_{\beta} + (0.3)_{\beta} = 3.4 \text{ ppm}$ e. methylene = $1.2 + (0.3)_{\alpha} = 1.5$ ppm actual = 3.0 and 3.2actual = 1.7c. methine = $1.5 + (1.4)_{\alpha} + (2.3)_{\alpha} + (0.2)_{\beta} = 5.4$ ppm

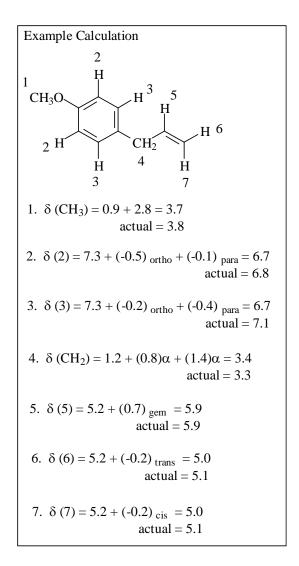
actual = 5.2

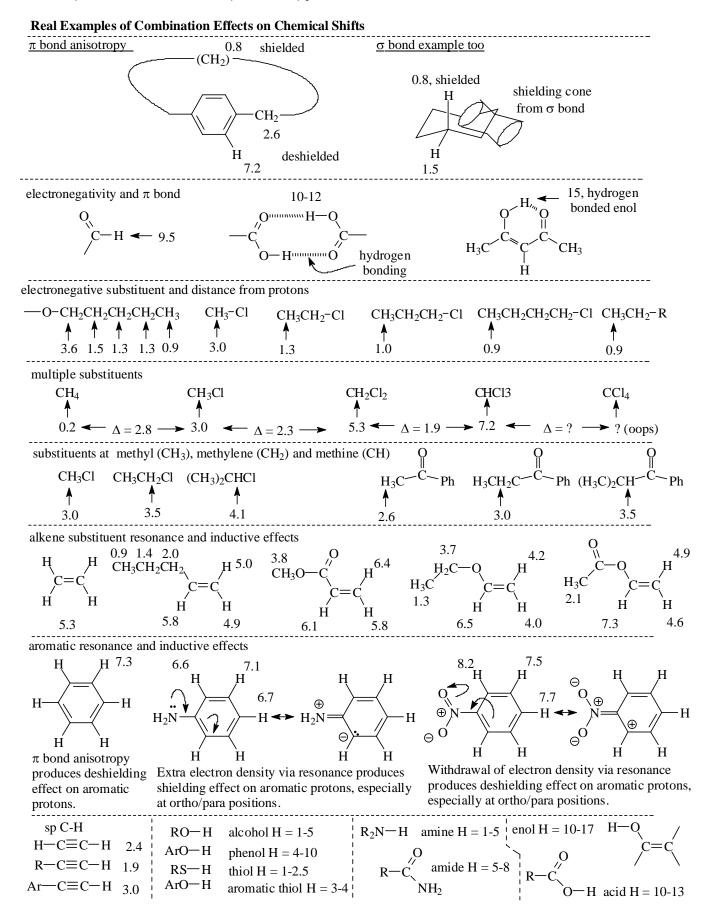

f. methylene = $1.2. + (1.7)_{\alpha} = 2.9 \text{ ppm}$ actual = 2.9

Estimated chemical shifts for protons at alkene sp² carbons

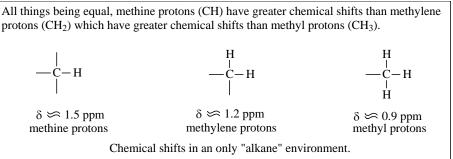
Substituent	α_{geminal}	α_{cis}	α_{trans}
H- Hudrogon	0.0	0.0	0.0
Hydrogen R-	0.5	-0.2	-0.3
Alkyl C ₆ H ₅ CH ₂ -	0.7	-0.2	-0.2
Benzyl X-CH ₂ -	0.7	0.1	0.0
Halomethyl (H)/ROCH ₂ -	0.6	0.0	0.0
$\frac{\text{alkoxymethyl}}{(H)_2/R_2NCH_2}$	0.6	-0.1	-0.1
aminomethyl RCOCH ₂ -	0.7	-0.1	-0.1
<u>α-keto</u> NCCH ₂ -	0.7	-0.1	-0.1
$\frac{\alpha - cyano}{R_2C = CR - cr}$	1.2	0.0	0.0
Alkenyl C ₆ H ₅ -	1.4	0.4	-0.1
Phenyl F-	1.5	-0.4	-1.0
Fluoro Cl- Chloro	1.1	0.2	0.1
Chloro Br- Bromo	1.1	0.4	0.6
I- Iodo	1.1	0.8	0.9
RO- akoxy (ether)	1.2	-1.1	-1.2
RCO ₂ - O-ester	2.1	-0.4	-0.6
$\frac{O-ester}{(H)_2/R_2N}$ N-amino	0.8	-1.3	-1.2
RCONH- N-amide	2.1	-0.6	-0.7
O ₂ N- Nitro	1.9	1.3	0.6
RS- Thiol	1.1	-0.3	-0.1
OHC- Aldehyde	1.0	1.0	1.2
ROC- Ketone	1.1	0.9	0.7
HO ₂ C- C-acid	0.8	1.0.	03
RO ₂ C-	0.8	1.0	0.5
C-ester H ₂ NOC- C-amide	0.4	1.0	0.5
NC- Nitrile	0.3	0.8	0.6

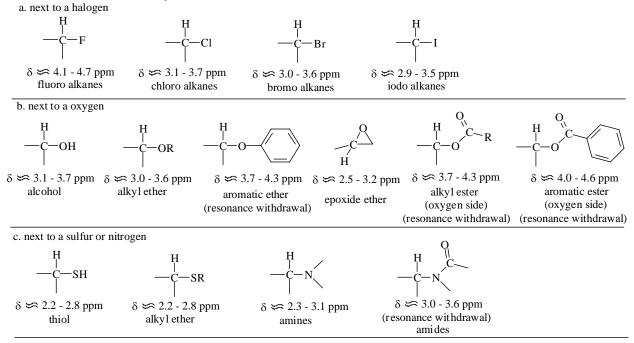

Example Calculation

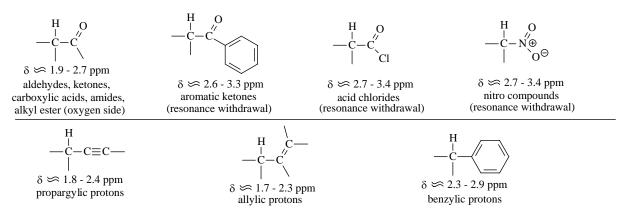



Z:\classes\spectroscopy\all spectra tables for web.DOC

Estimated chemical shifts for protons at aromatic sp² carbons

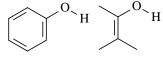

Substituent	α ortho	α meta	α para
H-	0.0	0.0	0.0
Hydrogen	0.0	0.0	0.0
CH ₃ -	-0.2	-0.1	-0.2
Methyl	-0.2	-0.1	-0.2
CICH ₂ -	0.0	0.0	0.0
	0.0	0.0	0.0
Cholromethyl	0.6	0.1	0.1
Cl ₃ C-	0.6	0.1	0.1
Halomethyl	0.4	0.1	
HOCH ₂ -	-0.1	-0.1	-0.1
Hydroxymethyl			
$R_2C=CR-$	0.1	0.0	-0.1
Alkenyl			
C ₆ H ₅ -	1.4	0.4	-0.1
Phenyl			
F-	-0.3	0.0	-0.2
Fluoro			
Cl-	0.0	0.0	-0.1
Chloro			
Br-	0.2	-0.1	0.0
Bromo			
<u>I-</u>	0.4	-0.2	0.9
Iodo			
HO-	-0.6	-0.1	-0.5
Hydroxy			
RO-	-0.5	-0.1	-0.4
Alkoxy			
RCO ₂ -	-0.3	0.0	-0.1
O-ester			
$\frac{1}{(H)_2/R_2N}$	-0.8	-0.2	-0.7
N-amino			
RCONH-	0.1	-0.1	-0.3
N-amide	0.1	0.1	0.5
O ₂ N-	1.0	0.3	0.4
Nitro	1.0	0.5	0.1
RS-	-0.1	-0.1	-0.2
thiol/sulfide	-0.1	-0.1	-0.2
OHC-	0.6	0.2	0.3
Aldehyde	0.0	0.2	0.5
ROC-	0.6	0.1	0.2
Ketone	0.0	0.1	0.2
HO ₂ C-	0.9	0.2	0.3
C-acid	0.7	0.2	0.5
RO ₂ C-	0.7	0.1	0.2
	0.7	0.1	0.2
C-ester	0.0	0.1	0.2
H ₂ NOC-	0.6	0.1	0.2
C-amide			
NC-	0.4	0.2	0.3
Nitrile			




Proton chemical shifts of hydrogen on sp³ carbons depend on two main factors (electronegativity and pi bond anisotropy). All values listed below are only approximate and have a small plus or minus range about the listed value.

1. $\underline{sp^{3} C-H}$ Electronegative atoms in the vicinity of hydrogen deshield protons and produce a larger chemical shift. If the electronegative atom is in resonance with an adjacent pi system that further withdraws electron density, the chemical shift is increased.

2. $\underline{sp^3 C-H}$ Pi bonds in the vicinity of hydrogen also deshield protons via pi bond anisotropy and produce a larger chemical shift. The closer the $sp^3 C-H$ is to the pi bond the greater chemical shift observed. When an electronegative atom is part of the pi bond, the chemical shift also increases.


3. <u>sp² C-H</u> Hydrogens at the side of a pi bond are deshielded even more than above via pi bond anisotropy. An aldehyde produces the largest effect due to the electronegative oxygen, followed by an aromatic ring, followed by alkenes and finally terminal alkynes. (One sp C-H)

alkene C-H H $\delta \approx 5.0 \text{ ppm}$ C-H R $-C$		$5 - 6.5 \text{ ppm} \underset{\text{RO}}{\overset{\text{O}}{\longrightarrow}} H \underset{\text{H}}{\overset{\text{O}}{\longrightarrow}} H \underset{\text{RO}}{\overset{\text{O}}{\longrightarrow}} H \underset{\text{H}}{\overset{\text{O}}{\longrightarrow}} H \underset{\text{RO}}{\overset{\text{O}}{\longrightarrow}} H \underset{\text{H}}{\overset{\text{O}}{\longrightarrow}} H$
Η δ ≒ 5.7 ppm	$\delta \approx 6.0 - 6.3 \text{ ppr}$	
simple vinylic protons	vinylic protons (resonance and inductive withdrawal)	vinylic protons (resonance donation and inductive withdrawal)
aromatic C-H	δ ≒ 7.9 - 8.3 ppm	δ ≈ 6.7 - 7.0 ppm δ ≈ 6.5 - 7.0 ppm
$\delta \approx 7.1 - 7.3 \text{ ppm}$	H C C O	
simple aromatic protons	aromatic protons (resonance and inductive withdrawal)	aromatic protons (resonance donation and inductive withdrawal)
aldehyde C-H all	xyne C-H	
	С≡С−Н	
0 🗣 🥬 To ppin	≈ 1.9 - 3.2 ppm	
aldehydes terr	ninal alkyne protons	

4. There are several kinds of hydrogen attached to heteroatoms. Some of these are listed below. Often these hydrogens do not follow the N+1 rule because they exchange via acid/base proton exchanges and are not next to neighbor protons long enough to allow coupling to be observed. They are often observed as broad singlets (sometimes so broad they are not easily seen in the spectra). If the exchange rate is very fast among the exchangeable protons on the NMR time scale, all of the exchangeable protons may appear together at a single, averaged chemical shift.

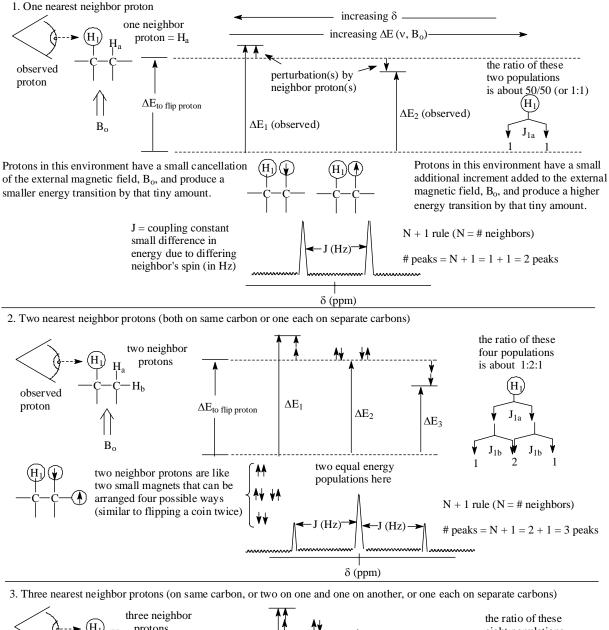
—0_.Н

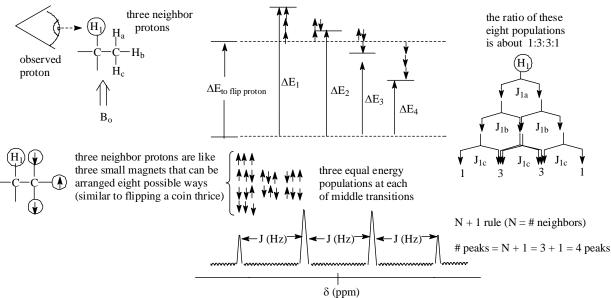
 $\delta \simeq 7 - 15 \text{ ppm}$ phenol and enol protons

—с″́ 0-н

δ ≫ 10 - 12 ppm

carboxylic acids


When carbons are decoupled from their attached hydrogens they all appear as singlets (as if there were no hydrogen neighbors). When carbons are coupled to their hydrogens, carbons follow the N+1 rule. Methyls appear as quartets = q, methylenes appear as triplets = t, methines appear as doublets = d, and carbons without hydrogen appear as singlets = s. Carbon chemical shifts are spread out over a larger range than proton chemical shifts (they are more dispersed). It is less likely that two different carbon shifts will fall on top of one another. However, the relative positions of various types of proton and carbon shifts have many parallel trends (shielded protons tend to be on shielded carbons, etc.)


Т

Simple alkane	CH ₃ —	—CH ₂	—Сн	—Ç—
carbons	$\delta \approx 0 - 30 \text{ ppm}$ (q)	$\delta \approx 20 - 40 \text{ ppm}$ (t)	$\delta \approx 30 - 50 \text{ ppm}$ (d)	$\delta \approx 30 - 60 \text{ ppm}$ (s)
sp ³ carbon	CH3-	—CH ₂	—Сн	
next to oxygen	δ झ 50 - 60 ppm (q)	$\delta \approx 55 - 80 \text{ ppm}$ (t)	δ झ 60 - 80 ppm (d)	l δ ≽ 70 - 90 ppm (s)
sp ³ carbon next to nitrogen	CH3—	—CH2	—CH	
nent to indogen	δ झ 10 - 50 ppm (q)	δ 🖛 35 - 55 ppm (t)	δ झ 50 - 70 ppn (d)	$\delta \approx 50 - 70 \text{ ppm}$ (s)
sp ³ carbon next to bromine or chlorin	ne	CH ₂ ⇒ 25 - 50 ppm (t)	CH δ ≈ 60 - 80 ppm (d)	$\begin{array}{c} -C \\ \hline \\ \delta \rightleftharpoons 60 - 80 \text{ ppm} \\ (s) \end{array}$
sp carbon (alky	nes) $-C \equiv C - \delta \approx 70 - 90$		sp carbon (nitriles)	—C≡N δ ≒ 110 - 125 ppm
sp ² carbon (alke and aromatics)	$\delta \approx 100 - 1$ simple sp ² resonance donation	carbon moves δ lower,	$\delta \approx 140 - 160$ sp ² carbon attached to a X = oxygen, nitrogen, 1 conjugated with a carbo	n electronegative atom halogen) or C_{β} carbon
	resonance withdrawa			
$\delta \approx 160 - 1$ carboxyl c (acids, ester (s)	arbons	H δ ≌ 190 - 210 aldehyde carbon values when con (d)	s, lower ket	R $s \approx 190 - 220 \text{ ppm}$ sone carbons, lower ues when conjugated (s)

Z:\classes\spectroscopy\all spectra tables for web.DOC

Т

Beauchamp

Multiplets when the N + 1 rule works (all J values are equal).	
s = singlet d = doublet t = triplet q = quartet sex = sextet o = octet 1 7 21 35 35 21 7 1 1 1 1 1 1 1 1	relative sizes of peaks in multiplets

Combinations or these are possible.

dd = doublet of doubletsddd = doublet of doublet of doublets dddd = doublet of doublet of doublets dt = doublet of triplets td = triplet of doublets

etc.

	Range	<u>Typical</u>	/	Range	<u>Typical</u>
	0-30 Hz	14 Hz	$H_{a} C = C H_{b}$	0-3 Hz	1 Hz
geminal protons - can have different and split one another if they are dia		S	cis / allylic coupling, notice through 4 bonds		
	Range	<u>Typical</u>		Range	Typical
$\begin{array}{c} H_a \ H_b \\C - C C \\ \ \ \end{array}$	6-8 Hz	7 Hz		0-3 Hz	1 Hz
icinal protons are on adjacent atoms, rotating coupling averages out to abo			trans / allylic coupling, notice through 4 bonds		
$\theta = dihedral$	Range	Typical	0 0	Range	Typical
$H_{a} H_{b} = dihedral angle H C C C H C C C C C C C C C C C C C C $	0-12 Hz	7 Hz		9-13 Hz	10 Hz
	depends of	n dihedral	H_a H_b		
Н	angle, see Karplus eo	plot of	sp ² vicinal coupling (different π bonds)		
	Range	<u>Typical</u>		Range	Typical
$\begin{array}{c c} H_a & H_b \\ -C - C - C - C C $	0-1 Hz	0 Hz	-C - C	1-3 Hz	2 Hz
protons rarely couple through 4 chen unless in a special, rigid shapes (i.e. V			sp ³ vicinal aldehyde coupling		
	Range	T • 1		D	
	Kange	<u>Typical</u>		Range	<u>Typical</u>
$C = C H_a$	0-3 Hz	<u>1 ypicai</u> 2 Hz		<u>Kange</u> 5-8 Hz	<u>Typical</u> 6 Hz
/ H _b			H_a H_b -C O sp^2 vicinal aldehyde coupling		
$^{\gamma}$ $^{\rm H}_{\rm b}$ sp ² geminal coupling					
/ H _b	0-3 Hz	2 Hz		5-8 Hz	6 Hz
$^{\prime}$ $^{\rm H}_{\rm b}$ sp ² geminal coupling	0-3 Hz <u>Range</u>	2 Hz Typical	sp ² vicinal aldehyde coupling H _a	5-8 Hz <u>Range</u>	6 Hz <u>Typical</u>
H_b p^2 geminal coupling H_a C=C H_b p^2 cis (acylic) coupling (always	0-3 Hz <u>Range</u>	2 Hz Typical	sp ² vicinal aldehyde coupling H_a $-C-C=C-H_b$ sp / propargylic coupling	5-8 Hz <u>Range</u>	6 Hz <u>Typical</u>
H_b p^2 geminal coupling H_a C=C H_b p^2 cis (acylic) coupling (always	0-3 Hz <u>Range</u> 5-11 Hz	2 Hz Typical 10 Hz	sp ² vicinal aldehyde coupling H_a $-C-C=C-H_b$ sp / propargylic coupling	5-8 Hz <u>Range</u> 2-3 Hz	6 Hz <u>Typical</u> 2 Hz
H_b p^2 geminal coupling H_a C=C H_b p^2 cis (acylic) coupling (always	0-3 Hz Range 5-11 Hz <u>Range</u>	2 Hz Typical 10 Hz Typical	sp ² vicinal aldehyde coupling H_a $-C-C=C-H_b$ sp / propargylic coupling notice through 4 bonds H_a H _b	5-8 Hz Range 2-3 Hz <u>Range</u>	6 Hz Typical 2 Hz Typical
$H_{a} = H_{b}$ $H_{a} = H_{b}$ $H_{a} = H_{b}$ $Sp^{2} \text{ cis (acylic) coupling (always smaller than the trans isomer)}$ $H_{a} = H_{b}$ $Sp^{2} \text{ trans coupling (always larger than the cis isomer)}$	0-3 Hz Range 5-11 Hz <u>Range</u>	2 Hz Typical 10 Hz Typical	sp ² vicinal aldehyde coupling $\begin{array}{c} H_{a} \\ -C \\ -C \\ = C \\ -H_{b} \\ sp / propargylic coupling \\ notice through 4 bonds \\ \end{array}$ $\begin{array}{c} H_{a} \\ -C \\ -C \\ = C \\ -C \\ -C \\ -C \\ -C \\ -$	5-8 Hz Range 2-3 Hz <u>Range</u>	6 Hz Typical 2 Hz Typical
$H_{a} = H_{b}$ $H_{a} = H_{b}$ $H_{a} = H_{b}$ $Sp^{2} \text{ cis (acylic) coupling (always smaller than the trans isomer)}$ $H_{a} = H_{b}$ $Sp^{2} \text{ trans coupling (always larger than the cis isomer)}$	0-3 Hz <u>Range</u> 5-11 Hz <u>Range</u> 11-19 Hz	2 Hz Typical 10 Hz Typical 17 Hz	sp ² vicinal aldehyde coupling $\begin{array}{c} H_{a} \\ -C \\ -C \\ -C \\ = C \\ -H_{b} \\ sp / propargylic coupling \\ notice through 4 bonds \\ \end{array}$ $\begin{array}{c} H_{a} \\ -C \\ -$	5-8 Hz Range 2-3 Hz 2-3 Hz 2-3 Hz Ange ortho 6-10 Hz	6 Hz Typical 2 Hz 3 Hz Typical 9 Hz
$H_{a} = H_{b}$ $H_{a} = H_{b}$ $H_{a} = H_{b}$ $Sp^{2} \text{ cis (acylic) coupling (always smaller than the trans isomer)}$ $H_{a} = H_{b}$ $Sp^{2} \text{ trans coupling (always smaller than the trans isomer)}$	0-3 Hz Range 5-11 Hz 11-19 Hz Range Range	2 Hz Typical 10 Hz 17 Hz Typical	sp ² vicinal aldehyde coupling $\begin{array}{c} H_{a} \\ -C - C \equiv C - H_{b} \\ sp / propargylic coupling \\ notice through 4 bonds \end{array}$ $\begin{array}{c} H_{a} \\ -C - C \equiv C - C \\ bis-propargylic coupling \\ notice through 5 bonds \end{array}$ ortho, meta and> H para coupling to H is the second seco	5-8 Hz Range 2-3 Hz 2-3 Hz 2-3 Hz	6 Hz Typical 2 Hz 3 Hz Typical

When J values are less than 1 Hz, it is often difficult to resolve them and a peak may merely appear wider and shorter.