La chimica dell'aglio e della cipolla

Agli insoliti composti solforati che sono responsabili dell'odore dell'aglio e che fanno lacrimare chi affetta le cipolle si devono anche le notevoli proprietà terapeutiche da lungo tempo attribuite a queste due piante
caso le prove sono vecchie e nuove. In Francia, un tempo, ai cavalli affetti da
trombosi alle zampe si somministravano aglio e cipolla. Più di recente, e cioè nel 1979, G, S. Sainani e collaboratori del Poona, in India, hanno pubblicato i risultati di uno studio epidemiologico compiuto su tre popolazioni che consumavano quantitativi differenti d'aglio e
cipolla. I soggetti erano vegetariani della comunità giainista, che mangiavan aglio e cipolla in quantità elevata (alme no 50 grammi di aglio e 600 grammi di quantità (noo piè di 10 grammi d'aglio

200 grammi di cipolle alla settimana), mai per tutta la vita.
Il gruppo di coloro che si astenevano
dal consumare dal consumare aglio e cipolla presentò
tempi brevi nella coagulazione del sangue. Inoltre, presentò il più elevato livello plasmatico di fibrinogeno. (Parte del processo di coagulazione del sangu è dovuta alla trasformazione del fibrinogeno in fibrina.) Già negli studi com-
piuti negli anni settanta era stato notato che gli oli estratti dall'aglio e dalla cipolla inibivano l'aggregazione delle pia strine. Dunque, le credenze popolan
attorno alle due piante sembravano attorno alle due
acquistare credito.

In che modo aglio e cipolla producono
loro effetti? La risposta deve essere ricercata a livello molecolare, tra le so-
stanze contenute in essi. Una delle stanze contenute in essi. Una delle ricer-
che chimiche di piü vecchia data fu comche chimiche dipiü vecchia data fu com-
piuta nel 1844 dal chimico tedesco Theodor Wertheim ed ebbe come sog gettol'aglio. Wertheim attribuival linte resse nei riguardi di questa pianta «prin cipamente alla presenza di un corpo
liquido, contenente zolfo: Iolio d'aglio Tutto ciò che si sa di questa sostanza si limita ad alcune semplici constalazion sul prodotto puro, che si ottiene per di-
stillazione in corrente di vapore dai bul bi di Allium sativum. Poiché finora ile-

I
mondo e stato sempre diviso in due: a una parte coloro che amanol'ache li detestano. NeI primo gruppo porono sepolttiassieme a piccole sculture di argilla e legno, raffiguranti bulbi d'aglio e di cipolla, cosicché i pasti consumati annoverarvi anche gli ebrei che vmo annoverarvi anche ge giebrel che vaga-
bondarono per 40 anni nel deserto del Sinai, ricordando con nostalgia «i pesci che mangiavamo in abbondanza quando eravamo in Egitto, e le zucche e i meloni, e i porri, le cipolle e Paglio.x Potremmo
includervi Sydney Smith, un saggista del XIX secolo, la cui Ricetta per l'insalata contiene questo consiglio: «Lasciate che rimangano nascosti nella pignatta pochi
atomi di cipolla, appena percepiti: ravviveranno tutto il saporex.
Nel secondo gruppo, avverso all'aglio e alla cipolla, dovremmo annoverare i sacerdoti egizi che, secondo Plutarco, «si astenevano dal mangiare cipolla
che... non é adatta né per il digiuno né per le celebrazioni, perché nel primo caso provoca sete, nel secondo lacrime in coloro che vi partecipanon. Dalla stessa parte si situerebbero anche i greci
antichi, che consideravano volgare lodore dell'aglio e della cipolla e proibivano l'entrata nel tempio di Cibele a coloro che ne avevano mangiato. Spregiatore di aglio e cipolla è anche Bottom, un
personaggio del Sogno di una notte di mezza estate, che istruisce la sua compagnia d'attori a «non mangiare né cipolla né aglio, perché dobbiamo avere un alito gradevoles.
Nel gruppo cipolla si possono includere, per motivi professionali, anche i chimici: infatti sono sempre stati attrattii da sostanze
con odori forti, sapori piccanti ed effeti con odori forti, sapori piccanti ed effetti
fisiologici marcati. Le loro ricerche, protrattesi per oltre un secolo, hanno stabi-
lito che, nel momento in cui si taglia un bulbo di cipolla o d’aglio, si libera un certo numero di molecole organiche d mi di zolfo con legami raramente osservabili in natura. Queste molecole sono molto reattive: si modificano spontaneamente in altri composti organici solorati, che prendono parte a ulteriori una notevole gamma di effetti biologici, di cui la proprietà di produrre lacrimazione e solo un esempio. Alcuni estratti timicotici. Altri sono antibatterici e ancioè impediscono alle piastrine del sangue di formare trombi, ossia aggregati di piastrine e di molecole di fibrina (una pestanza proteica): in altri termini, imL'aglio e la cipolla sono rappresentandella famighia delle gigliacee: i loro nomi botanici sono rispettivamente Alium sativum e Allium cepa (allium forse fica pungente). Entrambe le specie sono ra le più antiche piante coltivate: la loro rigine, molto probabilmente nell'Asia entrale, risale alla preistoria e per milpopolare. Il Codice Ebers, un papiro egizio di medicina, datato al 1550 a.C. circa, fornisce più di 800 formule terapeutiche, are cui 22 menzionano l'aglio numerosi disturbi, tra cui afferioni cardiache, dolori di testa, morsicature, infeGli egizi vermi e tumori.
Gli egizi non furono i soli ad apprezzare aglio e cipolla. Ippocrate e Aristo-
fane raccomandavano 'aglio per le sue proprietà medicamentose. Plinio il Vecchio citava numerose utilizzazion terapeutiche sia per I uno sia per l'altra Dioscoride, medico presso l'esercito
romano nel I secolo d.C., prescriveva raglio come vermifugo. Durante i prim
iochi olimpici in Grecia, sembra che aglio venisse consumato dagli atlet come stimolante.
In India l'aglio è stato usato come lo-
zione antisettica per lavare ferite e ulce re. In Cina il te di cipolle e stato a lungo raccomandato per la febbre, il mal dí lesta, il colera e la dissenteria. La medicina popolare è spesso intrecciata con la quattro ladrix. Si racconta che, nel 1721 quattro criminali fossero stati reclutat per seppellire i morti durante una terribile pestilenza a Marsiglia. I quattro lattia; loro segreto era una bevanda, co stituita da aglio macerato nel vino, che divenne immediatamente famosa come vinaigre des quatre voleurs e ancora ogg reperibile in Francia.
$A^{\text {ssieme a queste prescrizioni popola- }}$ $\mathrm{A}_{\text {ri, è emerso più di recente anche un }}$ attestato scientifico. Secondo una serie
di ricerche, aglio e cipolla hanno mostrato di possedere una blanda azione antibiotica. Nel 1858 Pasteur scopri le pro prietà antibatteriche dell'aglio. Più d Afrente, si dice che Albert Schweitzer, if trattamento della dissenteria amebica Nelle due guerre mondiali l'aglio fu usaoome antisettico nella prevenzion della cancrena. in ricerche di laborato rio si può evidenziare che il suo succo,
diluito fino a una parte su 125000 , inibisce la crescita dei batteri dei generi Staphylococcus, Streptococcus, Vibrio (compreso V. cholerae) e Bacillus (compresi B. typhosus, B. dysenteriae e B
enteritidis). Inoltre, mostra un largo spet tro di attività contro i funghi zoopatogen e contro molti ceppi di lievito, compres alcuni che provocano la vaginite.
Secondo un altro filone dion Secondo un altro filone di prove aglio e cipolia spiccano per la loro efficacia
contro le trombosi. Anche in questo

In tipo di compostit solforati che si possono estrarre dalfaglio dipende
dalle condizioni destrazione. La tecnica più butale è a distillazione in corrente di vapore, vale a dire la bollitura dell 'aglio seguita dall'estra ione dei composti dal vapore condensato: questo metodo fornisce i
diallidisolfuro (in alto). Una tecnica più raffinata consiste nell utiliza re come solvente Pralcool etilico a temperatura ambiente: siottiene cosi
Possido del dialiddisolfuro, Yallicina (al centro), che è la causa del
arhe i composti solforati estratti dalla dizioni d'estrazione. La distillazione in corrente di vapore falle conFaldeide propionica e il dipropildisolfuro (in alto). Grazie al Freon, un solvente mescolato con acqua a zero gradi centigradi, si ottiene "fattore lacrimogenow (al centro), la sostanza che fa lacrimare ch
affetta una cipolla. Questo fattore si presenta in due forme isomere,
tipico odore dellaglio. Con una tecnica ancor pià delicata, che utiliza Palcool etilico puro a una temperatura al di sotto dello zero, si ottiene
'alliina, molecola dotata di isomeria ottica, ossia con forme chimiche aventi strutture speculari ispetto agli atomi di zolfo e di carbonio

designate con i prefísisisin e antit la forma sin è prevalente. Utilizzando alcool efilico come solvente, a temperature a did sotto dello zero, si
ottiene infine il «precursore lacrimogeno" (in basso), isomero struttu-
 scono solamente per la formula di struttura. Nella cipolla un enzi-
ma trasforma ii precursore lacrimogeno nel fattore lacrimogeno.

Lenzima allinasi cataliza la traformazione, nell'aglio e nella cipolla, di
parecchi composti solforati. Cosa del massimo rilievo, questo enzima parecchi composti solforati. Cosa del massimo rilievo, questo enzima,
nellaglio, agise sulfallina, mentre nella cipolla agisce sul precursore
 to generico. (Per esempio, se R e un gruppo allile, $\mathrm{C}_{3} \mathrm{H}_{5}$, il substrato è
Trallina.) Sul substrato agisce un cofatiore, il piridossalfosfato, che gli fa formare un complesso con Penzima; il legame comprende Pinterazione
elettrostatica del substrato e di uno ione metallico $\left(M^{+}\right)$. Un gruppo ne, dal substrato, provocandone la demolizione e tiberando un acido solfenico, RSOH, con ammoniaca e piruvato. Una reazione chimicae
in sostanza una trasformazione di legami chimici allinterno delle
 molecole, che puo essere simboeggiata dal movimento di coppie d
elettroni: i movimentiù probabili sono indicatida frecee (in colore)
gami di zolfo sono stati studiati poco, le ricerche su questa sostanza prometto
di fornire risultati utili alla scienza» Wertheim utilizzava la tecnica dela distillazione in corrente di vapore. Metreva l'aglio in acqua bollente e il vapore coli quantitativi di olio d'aglio la cui distillazione forniva alcune sostanze olatili di odore assai forte. Egli propose erciò in nome di «allile» (da Allium) per radicale cellio e quello di schburo contenuto lano «solfoallile") per i composti volatiII termine «allile»s si usa ancora oggi: riferisce a gruppi aventi formula d $\mathrm{C}_{3} \mathrm{H}_{5}$. Numerosi compostion dentiun alliile hanno un odore pungente. Nel 1892 un altro ricercatore tedesco, chimico F. W. Semmler, applico la dipicchi d'aglio, producendo vapore agli grammi di un olio dal pessimo odore per ogni chilogrammo di prodotto di parenza. A sua volta Yolio fornì diallildiolfuro $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{SO}_{2} \mathrm{o}\right.$, più precisamencompagnato da minori quantita di dial. jiltri-e dialilitetrasolfuro (si veda l'illustrazione in alto a pagina 75). Sempre ediane dinue tore in corrente d sapore, da cinque tonnellate di cipolle o, che conteneva l'aldeide propionica $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}\right)$ assieme a numerosi comosti solforati, come il dipropildisolfuro
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~S}_{2}$. a successiva fondamentale scoperta a fu fatta nel 1944 da Chester J. Cavallioe collaboratori alla Sterling-Winthrop tato di New York. Questi ricercator stabilirono che con metodi meno brutal
della distillazione in corrente di vapore i ottenevano sostanze abbastanza diquattro chilogrammi d'aglio a temperaura ambiente e, alla fine, ottenne sel $\mathrm{C}_{6} \mathrm{H}_{1} \mathrm{Sim}$ di un oho la cui formula era teriche e antimicotiche. Era più potente della penicillina e della sulfaguanidina nei riguardi di Bacillus typhosus; negl altri casi sí rivelava meno efficace della enicillina. ta chimico, ossido di diallildisolfuro, principale sostanza che Semmler, mezo secolo prima, aveva isolato per distilazione in corrente di vapore. La sua
formulae $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{SCH}_{2} \mathrm{CH}=$ $=\mathrm{CH}_{2}$, il che rende abbastanza difficile il suo nome: allil-2-propentiosolfinato Va detto che la nomenclatura chimica è piuttosto complicata, ma assai precisa Ogni parte di un termine chimico riport la struttura di una sezione dello schelero carbonioso della molecola oppure segnala l'interruzione dello scheletro come gli atomi di zolfo. Nell'allil-2-propentiosolfinato il 2 indica che il doppio egame (=) tra carbonio e carbonio parmerato a partire dal punto dello zolfo. Le parentesi che racchiudono un atomo o un gruppo di atomi indicano che quell atomo o quel gruppo di atomi non ta parte della catena principadella molecola.
a sostanza con un nome piû semplic ilicina. Si tratta di un liquido incolore chimicamente instabile, che giustifica appieno l'odore dell'aglio, molto più di
quanto facciano i diallilsolfuri. Fsso oggetto negli Stati Uniti di ben due bre vetti registrati sotto il nome di Cavallito
na il suo impiego in campo clinico come agente antibatterico e stato abbandona ione a causa dell'odore. L'allicina è si responsabile dell'odore dell'aglio, ma un bulbo d'aglio non ema na praticamente alcun odore finché non
viene tagliato o schiacciato. Nel 1948 Arthur Stoll ed Ewald Seebeck della Sandoz a Basilea trovarono la spiega zione di questo fenomeno: l'allicina s forma a partire da un precursore inodo ro, che Stoll e Seebeck hanno identificato come (+)-S-allil-L-cisteinsolfos sido, con formula $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{~S}(\mathrm{O})$ $\underset{\text { lettera } L \text { indicano una particolare dispo }}{\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{COOH}}$ sizione spaziale per l'atomo di zolfo per quello di carbonio attaccato all'azoo.) Evidentemente il taglio o lo schiacciamento der aglio permette alrenzima con il precursore dell'allicina. Stoll e Seebeck diedero il nome d allina a questo precursore che form circa lo 0,24 per cento del peso di u
tipico bulbo d'aglio. L'allina puo for marsi allorché un allile e un atomo do ossigeno si attaccano all'atomo di zolfo hell'amminoaciao cisteina. Essa pu anche essere estratta dall'aglio, ma
questa operazione deve svolgersi in condizioni chimiche assai blande. Per successiva cristallizzazione si ottengono cristalli aghiformi finissimi, incolori

,
'alliina è una molecola dalle peculiar proprietà: in particolare, è stata la isomeria ottica, dovuta a forme specu ari rispetto all atomo di zolfo e pecudi carbonio. L'isomeria ottica si ha quando una molecola si presenta in forme speculari e la natura favorisce del carbonio. Sotto l'influenza dell'allinasi, lallina si decompone in acid 2-propensolfenico (si veda lillustraziosce preferenzialmente sullisomero del l'alliina designato con (+), ossia sull forma che provoca la rotazione di un fascio di luce polarizzata in senso orario. A sua volta racido 2-propensolfenic conda molecola dello stesso acido per dare T'allicina.
Mentre le ricerche sulla chimica del l'aglio erano in pieno svolgimento, 1961 il biochimico finlandese Arttur Virtanen (che aveva ricevuto nel 194 i) premio Nobel per la chimica, grazie
alle ricerche sull'allevamento degli ani-
mali) dimostrò che le cipolle contengo nolfoss-(+)-s-(1-propenil)-L-cisteinl'alliina (si veda l'illustrazione in basso pagina 75) In altre parole il contenuto chmico e identico a quello della alliina solo la struttura differisce. (Precisamenlegame che come indical'1 legamesto, come ind fo.) Il trans-(+)-S-(1-propenil)-L-cisteinsolfossido e il «precursore lacrimo geno» (PL); l'enzima allinasi, presente lacrimogeno» (FL), ossia in quella so stanza che provoca lacrimazione in chi affetta una cipolla.
La formula bruta del fattore lacrimo genoe $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{SO}$, che corrisponde a più
50 diverse formule di struttura nen ipotizzò che la formula di struttura fosse $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHS}(\mathrm{O}) \mathrm{H}$ e non la for mula alternativa $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHS}-\mathrm{O}-\mathrm{H}$,
catena principale carboniosa della molecola. (Questi composti sono entrambi denominati acido trans-1-propensolfenico.) Nel frattempo W. F. Wilkins, lau-
reando alla Cornell University, aveva proposto la formula di struttura $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}=\mathrm{SO}$, che corrisponde al nome propantial-S-ossido. Dieci anni dopo, le della International Flavors and Fragrances Company a Union Beach, nello stato del New Jersey, hanno confermato questa ipotesi.
Nell'aglio, quina
forraglio, quindi, una allinasi traodoroso dell aglio. Nella cipolla una allinasi trasforma il precursore lacrimogeno nel fattore lacrimogeno. Queste non enzimi che, sia nell'aglio sia nella cipolla, agiscono su numerose molecole: parlando in gergo chimico, si dice che questi strati. Tutti questi substrati sono costi-

La decomposizione del metimetantiosolfinato, omologo o version messo di chiarire le vie metaboliche che portano all'allicina stessa. Lengo una via (in alto) il metilmetantiosolfinato si decompone in
cido metansolfenico e in tioformaldeide; poi due molecole di acido etansoffenico si combinano per rigenerare una molecola di metilime-
antiosolfinato. Lungo un'altra via (in basso), tre molecole di metilmelantiosolfinato. Lungo un'altra via (in basso), tre molecole di metilme-
antiosolfinato si condensano per produrre $2,3,5$-ritiaesano- 5 -ossido.

La decomposizione dellallicina procede lungo diverse vie. In una (in un'altra serie di reazioni (in basso) Pallicina si autodecompone, dio, tre molecole di allicina si combinano, producendo due molecole
 co, efficace almeno quanto Paspirina nel prevenire loggregazione delle
piastrine e perciol la coagulazione del sangue. Esso si presenta in due
forme, designate trans e e cis; la cis e elievemente meno efficace. Lungo
un’altra serie di reazioni (in basso) Pallicina si autodecompone,
formando acido 2.propensolfenico e tioacroleina, entrambe sostanze
molto reattive. Per autocondensazione di due molecole di acido 2 -promolto reative. Per auttocondensazione di due molecole diacido 2 -pro-
pensolfenico si rigenera una molecola di allicina; per autocondensaiopensolfenico si rigenera una molecola di alilicina; per autocondensazio-
ne di due molecole di tioacroleina si formane due tipi di composto
cicico mediante un processo chimico, ta reazione di Diels-Alder.
tuiti da sostanze contenenti zolfo, sinte tizzate nell'aglio e nella cipolla mediant s'amminoacido solforato cisteina. D essi, le allinasi formano diversi acid solfenici, RSOH, dove R indica un radicale: o rallile $\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2}\right)$, tile $\left(\mathrm{CH}_{3}\right)$ o il propile $\left(\mathrm{C}_{3} \mathrm{H}\right)$. I sotto prodotti delle reazioni sono il piruva oo $\left(\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{COO}^{-}\right)$e l'ammoniac $\left(\mathrm{NH}_{3}\right)$.
Secondo le più recenti ricerche, le reazioni richiedono la partecipazion dr una sostanza addizionale o cofattocofattore e substrato. Evidentement pertanto il substrato viene trasformat in una forma attivata. Un gruppo ba sico presente nellenzima (ossia un gruppo che puo catturare protoni) inizia a questo punto la liberazione d acido solfenico. Da parte loro gli acid
solfenici sono estremamente instabili vanno incontro spontaneamente a ulteriori trasformazioni.

Le mie ricerche sulla chimica dell'aglio 1971 con una più aprno avuto inizion ne zione delle proprietà dell'allicina. I mi collaboratori e io, all Universita de Missouri a Saint Louis, abbiamo co minciato a studiare la trasformazi
ne chimica del metilmetantiosolfinato $\mathrm{CH}_{3} \mathrm{~S}(\mathrm{O}) \mathrm{SCH}_{3}$. Il composto è l'omologo piu semplice dell'allicina: da un lata presenta un gruppo chimico ($\mathrm{S}(\mathrm{O}) \mathrm{H})$ fondamentale per la chimica dell'allic
na; dall'altro, lo scheletro più semplice di quello dell'allicina. A sieme a John O'Connor ho scoperto duc processi chimici insoliti (si veda lillu strazione a pagina 77). In uno di essi, pe nato, si ottiene acido metansolfenico $\mathrm{CH}_{3} \mathrm{SOH}$, e tioformaldeide, $\mathrm{CH}_{2}=\mathrm{S}$. loro volta, due molecole diacido metan va, si combinano (cot lolmente reat molecola d'acqua) e si riforma cosi molecola di metilmetantiosolfinato. N secondo processo da noi studiato, in-
vece, il metilmetantiosolfinato subisce una reazione di autocondensazione, do: $\mathrm{CH}_{3} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{SSCH}_{3}$
A distanza di dodici anni, la nostra ricerca si e rivelata importante nel chiarire la struttura e il modo dif formazione del fattore antitrombotico dell'aglio.
Mahendra K. Jain e Roger W. Crecely dell'Università del Delaware, in collaborazione con Rafael Apitz-Castro e Maria R. Cruz dell' Istituto venezuelano
di ricerche scientifiche di Caracas handi ricerche scientifiche di Caracas, han-
no prodotto parechi estratti d'aglio, particolarmente attivi nel prevenire T'aggregazione delle piastrine del sangue. L'estratto più attivo aveva formula bruta $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~S}_{3} \mathrm{O}$. In stretta collabora-
zione con i nostri colleghi delle università del Delaware e del Venezuela, Saleem Ahmad e io, alla State University of New York ad Albany, siamo riusciti a chiarire la struttura del composto,
la quale e $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CH}=$ $\mathrm{CHSSCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$, ossia $4,5,9$-tritia-dodeca-1,6,11-trien-9-ossido. La deno-
minazione da noi data al composto che significa aglio.
te mie prigho. l'autocondensazione del metilmete solfinato, hanno suggerito che l'ajoene potesse formarsi per autocondensazione dell'allicina. Abbiamo verificato questa ipotesi scaldando semplicemente l'allicina con un miscuglio dracqua e di un
solvente organico come lacetone (si veda l'illustrazione nella pagina a fronte). Negli esperimenti condotti in seguito sie e potuto dimostrare che l'ajoene come fattore antitrombotico è potente almeno
quanto l'aspirina. Gli studi compiuti da gruppi di ricerca delle università del Delaware e del Venezuela, in collaborazione con James Catalfamo del
New York State Department of Health ad Albany, fanno pensare, infine, che l'ajoene agisca inibendo i recettori del fibrinogeno sulle piastrine, Più precisamente, vi può essere un'interazione dei solfurici dell'ajoene con gruppi complementari sottol'aspetto chimico e presenti sulla superficie delle piastrine, i quali potrebbero altrimenti legarsi al fibrinogeno. Nuovi esperimenti oggi in
corso dovrebbero stabilire l'eventuale utilità farmacologica dell'ajoene.
Un secondo aspetto della chimica del metilmetantiosolfinato, omologo del'allicina, sie e anche rivelato interessan-
te. Ho fatto rilevare poc'anzi che la decomposizione del metilmetantiosolfinato produce tioformaldeide $\left(\mathrm{CH}_{2}=\mathrm{S}\right)$. Sembra che anche per l'allicina abbia luogo il medesimo tipo di processo. In
particolare, la decomposizione dell'allicina produce tioacroleina, $\mathrm{CH}_{2}=\mathrm{CH}-$ $\mathrm{CH}=\mathrm{S}$, un composto fortemente reatti-
vo, di colore blu zaffiro. Hans Bock, delTUniversità di Francoforte, ha dimostrato che la tioacroleina dib criza, biamo trovato nell' aglio nel rapporto in cui Bock li avrebbe previsti. La dimerizzazione procede mediante una reazione di Diels-Alder, in cui un'unità tetraatomica di una molecola si combina con per formare un anello esaatomico. Le reazioni di Diels-Alder sono tra le più mportanti in chimica organica.
Per quanto concerne la cipolla, rimaneva un problema da risolvere: il fat-
tore lacrimogeno era stato identificato tore lacrimogeno era stato identificato ossido, ma questa ossia propantial-Smeri. Nel tentativo di scoprire quale dei due è contenuto nella cipolla, Larry Revelle, Robert E. Penn e Ali Bazzi hanno studiato il problema nel mio laboratorio. Per estrarre il fattore lacrimogeno hanno sminuzzato alcune cipolle
congelate, hanno utilizzato un solvente (Freon), hanno prodotto un residuo eliminando il solvente a -78 gradi cenvigradi e hanno distillato il residuo sotto due tecniche spettroscopiche molecolari indipendenti (la spettroscopia a microonde e la spettroscopia a risonanza magnetica nucleare) sono poi riusciti a parte di sin-propantial-S-ossido il cui isomero anti e presente solo in traccia. Nella forma \sin il gruppo etilico $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)$, a un'estremita della catena carboniosa ossigeno presente all'altra estremità della catena.

Un ulteriore problema è stato chiarito
nel mio laboratorio da due esperimenti: ell'aglio le allinasi producono acidi solfenici; nella cipolla producono pro-
pantial-S-ossidi, distinti dagli acidi solfenici. In particolare, i propantial-S-ossidi appartengono alla classe di composti detti solfine. Se le solfine si formassero cessi chimici completamente diversi: questa conclusione è strana perché un enzima, di solito, catalizza un solo tipo di reazione, non parecchi.
Nel primo esperimento, Penn ha stabilito mediante spettroscopia che la
struttura dell'acido metansolfenico (il più semplice tra gli acidi solfenici) è $\mathrm{CH}_{3} \mathrm{~S}-\mathrm{O}-\mathrm{H}$ e non $\mathrm{CH}_{3} \mathrm{~S}(\mathrm{O}) \mathrm{H}$. Poi, in un secondo esperimento, Penn e io ab-
biamo trovato che quando l'acido trans--1 -propensolfenico (il fattore lacrimogeno di Virtanen) viene preparato con metodi chimici ristruttura rapidamente a propria molecola trasformandosi in (basandosi sul primo esperimento) che I'acido trans-1-propensolfenico abbia struttura $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHS}-\mathrm{O}-\mathrm{H}$, anziché $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHS}(\mathrm{O}) \mathrm{H}$, la ristrutturazione della molecola può essere dedotta
facilmente come un trasporto interno di idrogeno (si veda l'illustrazione in questa pagina). Si puo concludere pertanto che la fase iniziale nella formazione del fattore lacrimogeno della cipolla nico (acido 1-propensolfenico), che in seguito si trasforma rapidamente nel vero fattore lacrimogeno: il \sin-propan-tial-S-ossido
temente reativogeno è anch'esso foressere idrolizzato, fornendo (insieme ad altre sostanze) acido solforico. Può di-

Le vie che portano al fattore lacrimogeno sono complesse. Nellimmepartecipa a un doppio partecipa a un doppio legame. La vicinanza favorisce un trasporto
interno di idrogeno (frecee in colore) e, quindi, la formaione del
(Qe. Questo puo subire unidroisis (in atio), formando aldeíde proioè dimerizarsi (al centro), formando un curioso anello a quattro
tomi; infine, può essere bloccato in una struttura bicicica (in basso).
merizzare, formando un dimero nella cui strana struttura e inserito un anello a quattro atomi. Come Alan Walle io ab-
biamo trovato, questo dimero può dar biamo trovato, questo dimero può dar
luogo a una reazione di Diels-Alder con il ciclopentadiene, molecola estremamente reattiva, contenente una unità a quattro atomi, ii «diene». La reazione blocca la struttura sin del fattore lacri-
mogeno in una intelaiatura molecolare rigida, fatta di due anelli uniti tra loro. Le proprietà chimiche del fattore lacrimogeno chiariscono lefficacia dei
metodi usati in cucina per attenuare il metodi usati in cucina per attenuare il
disagio di chi deve affettare cipolle. La sua volatilità viene ridotta fortemente tenendo in frigorifero la cipolla. Inoltre, sbucciando la cipolla sotto l'acqua corin quanto è idrosolubile.
Perché la natura ha incorporato nell'aglio e nella cipolla questo apparato chimico per fabbricare l'allicicia e il fattore lacrimogeno? Poiché l'allicina e
antimicotica oltre che antibiotica, poantmicotica oltre che antibiotica, po-
trebbe proteggere la pianta dell'aglio dall'eventuale decomposizione del bulbo, provocata da funghi. E poiché il fattore lacrimogeno della cipolla à irritante e ripugnante per taluni animali, potreb-
be essere anch'esso importante per la sopravvivenza della pianta.
Resta insoluta la questione riguardante la proprietà antitrombotica di miei collaboratori e io non siamo mai riusciti a scoprire ajoene o composti ciclici antitrombotici nella polvere disidratata d'aglio; né l'abbiamo trovata nelle pillole, negli olii, negli estrattio o in La probabile spiegazione è che la fabbricazione della maggior parte di tali prodotti comincia con la distillazione gli effetti benefici attribuiti all'aglio si possono ottenere nel modo migliore facendo uso di aglio fresco. Naturalmente, il trattamento autonomo che preparati a base di aglio o di cipolla non deve sostituire un'accurata diagnosi e terapia medica. Basta un minimo di buon senso per rendersene conto; nel caso questo non bastasse si può ricorre-
re alloolfatto. L'ingestione di aglio e cipolla lascia un ricordo duraturo, perché i compostia base di zolfo, introdotti nel flusso sanguigno, trovano una via d'uscita nell'aria espirata e nella traspirazione. Virtù e vizi dell'aglio sono rias-
sunti in modo mirabile da Sir John Har ington nell'opera The Englishman's Doctor, scritta nel 1609 .

L'aglio ha poi la propriet
di salvare dalla morte;
sopportalo, anche se rende
''alito disgustoso
e non disprezzarlo come taluni, convinti che faccia soltanto e maleodorare.

