Estrazione pigmenti liposolubili dalle foglie di spinaci.

Myttex Forum ha chiuso definitivamente. Non è più possibile inviare messaggi, ma il contenuto è ancora consultabile in questo archivio.

AAA

2017-11-24 10:22

Salve a tutti, sto seguendo adesso le lezioni di organica I ma come spesso accade il laboratorio non va affatto di pari passo con la teoria.  Durante questa prova di lab. ci sono alcune cose che non mi sono chiare e cercherò di non dilungarmi. Quindi vi descrivo direttamente il Procedimento: Si trattano con etanolo le foglie di spinaci per disidratarle e in seguito a filtrazione con aspirazione(Buchner) si scarta la soluzione etanolica, si recuperano le foglie e le si trattano con acetone (triturando le foglie) per estrarre pigmenti e sali organici. In seguito si filtra la soluzione su carta e la si pone in imbuto separatore con miscela 1:1 (volume) di NaCl aq. (10%) e esano. Si estrae la fase organica (esano) due volte e si tratta con Na2SO4 anidro. Si filtra con ovatta e si concentra la soluzione di esano tramite evaporatore rotante fino a dimezzamento volume (bagno termostato 25°C). In seguito si effettua una TLC usando come eluente una miscela 70:30 (volume) di esano acetone.  DUBBI=1) perchè si sono estratti i pigmenti inizialmente con acetone? Cioè i pigmenti sono liposolubili, perchè sto utilizzando un solvente debolmente polare e aprotico?  2) A che serve la soluzione di NaCl acquosa durante l'estrazione? Grazie in anticipo e spero di non essere stato impreciso.  :-)

Beefcotto87

2017-11-24 17:00

Sposto e warno, visto che la gente non si prende nemmeno la briga di leggere.

I seguenti utenti ringraziano Beefcotto87 per questo messaggio: AAA

LuiCap

2017-11-27 10:57

Nelle cellule vegetali i pigmenti colorati sono contenuti nei cloroplasti:

https://upload.wikimedia.org/wikipedia/commons/1/11/Chloroplast-new.jpg

Essi sono costituiti principalmente da vari tipi di clorofilla di colore verde e vari tipi dixantofilla di colore giallo, arancio e rosso.

La struttura molecolare di tali molecole è costituita da una parte polare e da un parte apolare, perciò sono solubili in un solvente avente caratteristiche simili come l'acetone.Trattando le foglie verdi disidratate con acetone si estraggono perciò i pigmenti verdi e molte altre sostanze moderatamente polari e non.

La successiva estrazione viene eseguita con una miscela 1:1 di soluzione acquosa di NaCl al 10% ed esano.

La soluzione ionica di NaCl e l'esano non sono miscibili tra loro, quindi formano due fasi liquide distinte: l'esano costituisce la fase liquida superiore (d = 0,660 g/mL), mentre la soluzione acquosa di NaCl quella inferiore (d > 1 g/mL).

L'estratto organico in acetone è invece miscibile sia con l'esano che con la soluzione acquosa di NaCl; quando si mescolano questi tre solventi la soluzione acquosa di NaCl forma un'unica fase liquida con acetone aumentandone il carattere polare e rendendo perciò ancora più netta la separazione con l'esano apolare.

Eseguendo quindi la seconda estrazione nella fase acetone-acqua NaCl restano disciolte le sostanze più polari rispetto alla clorofilla e alla xantofilla, mentre nella fase di esano restano disciolte solo queste due ultime sostanze.

La funzione dell'NaCl è in definitiva quella di aumentare la solubilità dei pigmenti verdi in esano e, contemporaneamente, di aumentare la solubilità delle sostanze più polari in acetone.

Chlorophyll

CAS Registry Number: 1406-65-1

Literature References: The green pigment of plants. Higher plants and green algae contain chlorophyll a and chlorophyll b in the approx ratio of 3:1. Chlorophyll c is found together with chlorophyll a in many types of marine algae: Jeffrey, Biochem. J. 86, 313 (1963). Red algae (Rhodophyta) contain principally chlorophyll a and also chlorophyll d: Manning, Strain, J. Biol. Chem. 151, 1 (1943). Isoln by chromatography: Tswett, Ber. Deutsch. Bot. Ges. 24, 316, 385 (1906); Willstätter, Stoll, Investigations on Chlorophyll (transl by Schertz and Merz: Lancaster, 1928); Schertz, Ind. Eng. Chem. 30, 1073 (1938); Fischer-Orth-Stern, Die Chemie des Pyrrols Vol. II, part 2 (Leipzig, 1940); Zechmeister, Cholnoky, Principles and Practice of Chromatography (New York, 1943). Industrial large-scale isoln processes: Judah et al., Ind. Eng. Chem. 46, 2262 (1954). Structure: Fischer-Orth-Stern, loc. cit.; Ficken et al., J. Chem. Soc. 1956, 2273. Total synthesis of chlorophyll a: Woodward et al., J. Am. Chem. Soc. 82, 3800 (1960); Angew. Chem. 72, 651 (1960); Strell et al., ibid. 169; Woodward, Pure Appl. Chem. 2, 383 (1963). Abs config of chlorophylls a and b: Brockmann, Ann. 754, 139 (1971); Brockmann, Bode, Ann. 1974 (7), 1017. 13C-NMR study of chlorophyll a: S. Lötjönen, P. H. Hynninen, Org. Mag. Reson. 16, 304 (1981); of chlorophyll b: N. Risch, H. Brockmann, Tetrahedron Letters 24, 173 (1983). Review of syntheses: Johnson, Sci. Progr. 49, 77 (1961). Comprehensive reviews with bibliography: Stoll, Wiedemann, Fortschr. Chem. Org. Naturst. 1, 159-254 (1938); Fortschr. Chem. Forsch. 2, 538 (1952); The Chlorophylls, L. P. Vernon, G. R. Seely, Eds. (Academic Press, New York, 1966) 679 pp; Inhoffen et al., Fortschr. Chem. Org. Naturst. 26, 284-298 (1968); Inhoffen, Pure Appl. Chem. 17, 443-460 (1968).

Derivative Type: Chlorophyll a

CAS Registry Number: 479-61-8

Molecular Formula: C55H72MgN4O5

Molecular Weight: 893.49.

Percent Composition: C 73.93%, H 8.12%, Mg 2.72%, N 6.27%, O 8.95%

Properties: R = CH3. Sepn and purification: Anderson, Calvin, Nature 194, 285 (1962). Waxy blue-black microcrystals, usually aggregates of thin, lancet-like leaflets, mp 117-120°. [a]D20 -262° (acetone). Absorption max (ether): 660, 613, 577, 531, 498, 429, 409 nm. Freely sol in ether, ethanol, acetone, chloroform, carbon disulfide, benzene. Sparingly sol in cold methanol. Practically insol in petr ether. The alcoholic soln is blue-green with a deep-red fluorescence.

Melting point: mp 117-120°

Optical Rotation: [a]D20 -262° (acetone)

Absorption maximum: Absorption max (ether): 660, 613, 577, 531, 498, 429, 409 nm

Derivative Type: Chlorophyll b

CAS Registry Number: 519-62-0

Molecular Formula: C55H70MgN4O6

Molecular Weight: 907.47.

Percent Composition: C 72.79%, H 7.77%, Mg 2.68%, N 6.17%, O 10.58%

Properties: R = CHO. Waxy blue-black microcrystals. Sinters between 86° and 92°, becomes a viscous liquid at 120-130° and then begins to puff up in large bubbles. [a]D20 -267° (acetone-methanol). Absorption max (ether): 642, 593, 565, 545, 453, 427 nm Sparingly sol in petr ether, ligroin, cold methanol. Freely sol in abs alcohol, ether. The ether soln has a brilliant green color. Solns with other organic solvents are usually green to yellowish-green with red fluorescence.

Optical Rotation: [a]D20 -267° (acetone-methanol)

Absorption maximum: Absorption max (ether): 642, 593, 565, 545, 453, 427 nm Sparingly sol in petr ether, ligroin, cold methanol

Xanthophyll

CAS Registry Number: 127-40-2

CAS Name: b,e-Carotene-3,3¢-diol

Additional Names: lutein; vegetable lutein; vegetable luteol

Trademarks: Bo-Xan

Molecular Formula: C40H56O2

Molecular Weight: 568.87.

Percent Composition: C 84.45%, H 9.92%, O 5.62%

Literature References: One of the most widespread carotenoid alcohols in nature. Originally isolated from egg yolk, also isolated by chromatography from nettles, algae, and petals of many yellow flowers. Occurs also in colored feathers of birds: Volker, Z. Physiol. Chem. 288, 20 (1951). Extraction from petals of Tagetes patula L., Compositae: Karrer et al., Helv. Chim. Acta 30, 531 (1947). Occurs together with zeaxanthin, q.v. Dipalmitate occurs in Helenium autumnale L., Compositae and other flowers: Kuhn, Winterstein, Naturwiss. 18, 754 (1930). Conversion to zeaxanthin with sodium alcoholate: Karrer, Jucker, ibid. 266. Does not possess vitamin A potency: Schumacher et al., Poultry Sci. 23, 529 (1944). Stereochemistry: Zechmeister, Chem. Rev. 34, 267 (1944). Structure: Karrer, Helv. Chim Acta 34, 2160 (1951). Abs config: Goodfellow et al., Chem. Commun. 1970, 1578; Buchecker et al., Chimia 25, 192 (1971); eidem, Helv. Chim. Acta 57, 631 (1974). Synthesis: H. Mayer, A. Rüttimann, ibid. 63, 1451 (1980). Sepn and determn of configurational isomers: A. Rüttiman et al., J. High Resolut. Chromatog. Chromatog. Commun. 6, 612 (1983). Reviews: Zechmeister, Carotinoide (Berlin, 1934); Mayer, The Chemistry of Natural Coloring Matters (New York, 1943); Karrer, Jucker, Carotenoids (New York, 1950).

Properties: Yellow prisms with metallic luster from ether + methanol, mp 190° (corr), (a higher mp indicates impure material). Also reported as mp 183° [Buchecker (1974)]. [a]18Cd +165° (c = 0.7 in benzene). Absorption max (dioxane): 481, 453, 429, 333, 268 nm (e 142000, 152000, 100000, 15500, 35000). Insol in water, sol in fats and in fat solvents. More sol in boiling methanol (1:700) than zeaxanthin.

Melting point: Yellow prisms with metallic luster from ether + methanol, mp 190° (corr), (a higher mp indicates impure material); mp 183° [Buchecker (1974)]

Optical Rotation: [a]18Cd +165° (c = 0.7 in benzene)

Absorption maximum: Absorption max (dioxane): 481, 453, 429, 333, 268 nm (e 142000, 152000, 100000, 15500, 35000)

Derivative Type: Dipalmitate

Additional Names: Helenien

Trademarks: Adaptinol (Bayer)

Molecular Formula: C72H116O4

Molecular Weight: 1045.68.

Percent Composition: C 82.70%, H 11.18%, O 6.12%

Properties: Red needles from alcohol, mp 92°.

Melting point: mp 92°

I seguenti utenti ringraziano LuiCap per questo messaggio: luigi_67, AAA

Filippo

2017-11-26 10:55

E' stato usato l'Acetone perché le sostanze liposolubili si sciolgono nei solventi apolari.

Il Cloruro di Sodio è stato utilizzato per rompere le emulsioni fra le fasi in maniera più efficace.

I seguenti utenti ringraziano Filippo per questo messaggio: AAA

AAA

2017-12-18 17:19

LuiCap ha scritto:

Nelle cellule vegetali i pigmenti colorati sono contenuti nei cloroplasti:

https://upload.wikimedia.org/wikipedia/commons/1/11/Chloroplast-new.jpg

Essi sono costituiti principalmente da vari tipi di clorofilla di colore verde e vari tipi dixantofilla di colore giallo, arancio e rosso.

La struttura molecolare di tali molecole è costituita da una parte polare e da un parte apolare, perciò sono solubili in un solvente avente caratteristiche simili come l'acetone.Trattando le foglie verdi disidratate con acetone si estraggono perciò i pigmenti verdi e molte altre sostanze moderatamente polari e non.

La successiva estrazione viene eseguita con una miscela 1:1 di soluzione acquosa di NaCl al 10% ed esano.

La soluzione ionica di NaCl e l'esano non sono miscibili tra loro, quindi formano due fasi liquide distinte: l'esano costituisce la fase liquida superiore (d = 0,660 g/mL), mentre la soluzione acquosa di NaCl quella inferiore (d > 1 g/mL).

L'estratto organico in acetone è invece miscibile sia con l'esano che con la soluzione acquosa di NaCl; quando si mescolano questi tre solventi la soluzione acquosa di NaCl forma un'unica fase liquida con acetone aumentandone il carattere polare e rendendo perciò ancora più netta la separazione con l'esano apolare.

Eseguendo quindi la seconda estrazione nella fase acetone-acqua NaCl restano disciolte le sostanze più polari rispetto alla clorofilla e alla xantofilla, mentre nella fase di esano restano disciolte solo queste due ultime sostanze.

La funzione dell'NaCl è in definitiva quella di aumentare la solubilità dei pigmenti verdi in esano e, contemporaneamente, di aumentare la solubilità delle sostanze più polari in acetone.

Chlorophyll

CAS Registry Number: 1406-65-1

Literature References: The green pigment of plants. Higher plants and green algae contain chlorophyll a and chlorophyll b in the approx ratio of 3:1. Chlorophyll c is found together with chlorophyll a in many types of marine algae: Jeffrey, Biochem. J. 86, 313 (1963). Red algae (Rhodophyta) contain principally chlorophyll a and also chlorophyll d: Manning, Strain, J. Biol. Chem. 151, 1 (1943). Isoln by chromatography: Tswett, Ber. Deutsch. Bot. Ges. 24, 316, 385 (1906); Willstätter, Stoll, Investigations on Chlorophyll (transl by Schertz and Merz: Lancaster, 1928); Schertz, Ind. Eng. Chem. 30, 1073 (1938); Fischer-Orth-Stern, Die Chemie des Pyrrols Vol. II, part 2 (Leipzig, 1940); Zechmeister, Cholnoky, Principles and Practice of Chromatography (New York, 1943). Industrial large-scale isoln processes: Judah et al., Ind. Eng. Chem. 46, 2262 (1954). Structure: Fischer-Orth-Stern, loc. cit.; Ficken et al., J. Chem. Soc. 1956, 2273. Total synthesis of chlorophyll a: Woodward et al., J. Am. Chem. Soc. 82, 3800 (1960); Angew. Chem. 72, 651 (1960); Strell et al., ibid. 169; Woodward, Pure Appl. Chem. 2, 383 (1963). Abs config of chlorophylls a and b: Brockmann, Ann. 754, 139 (1971); Brockmann, Bode, Ann. 1974 (7), 1017. 13C-NMR study of chlorophyll a: S. Lötjönen, P. H. Hynninen, Org. Mag. Reson. 16, 304 (1981); of chlorophyll b: N. Risch, H. Brockmann, Tetrahedron Letters 24, 173 (1983). Review of syntheses: Johnson, Sci. Progr. 49, 77 (1961). Comprehensive reviews with bibliography: Stoll, Wiedemann, Fortschr. Chem. Org. Naturst. 1, 159-254 (1938); Fortschr. Chem. Forsch. 2, 538 (1952); The Chlorophylls, L. P. Vernon, G. R. Seely, Eds. (Academic Press, New York, 1966) 679 pp; Inhoffen et al., Fortschr. Chem. Org. Naturst. 26, 284-298 (1968); Inhoffen, Pure Appl. Chem. 17, 443-460 (1968).

Derivative Type: Chlorophyll a

CAS Registry Number: 479-61-8

Molecular Formula: C55H72MgN4O5

Molecular Weight: 893.49.

Percent Composition: C 73.93%, H 8.12%, Mg 2.72%, N 6.27%, O 8.95%

Properties: R = CH3. Sepn and purification: Anderson, Calvin, Nature 194, 285 (1962). Waxy blue-black microcrystals, usually aggregates of thin, lancet-like leaflets, mp 117-120°. [a]D20 -262° (acetone). Absorption max (ether): 660, 613, 577, 531, 498, 429, 409 nm. Freely sol in ether, ethanol, acetone, chloroform, carbon disulfide, benzene. Sparingly sol in cold methanol. Practically insol in petr ether. The alcoholic soln is blue-green with a deep-red fluorescence.

Melting point: mp 117-120°

Optical Rotation: [a]D20 -262° (acetone)

Absorption maximum: Absorption max (ether): 660, 613, 577, 531, 498, 429, 409 nm

Derivative Type: Chlorophyll b

CAS Registry Number: 519-62-0

Molecular Formula: C55H70MgN4O6

Molecular Weight: 907.47.

Percent Composition: C 72.79%, H 7.77%, Mg 2.68%, N 6.17%, O 10.58%

Properties: R = CHO. Waxy blue-black microcrystals. Sinters between 86° and 92°, becomes a viscous liquid at 120-130° and then begins to puff up in large bubbles. [a]D20 -267° (acetone-methanol). Absorption max (ether): 642, 593, 565, 545, 453, 427 nm Sparingly sol in petr ether, ligroin, cold methanol. Freely sol in abs alcohol, ether. The ether soln has a brilliant green color. Solns with other organic solvents are usually green to yellowish-green with red fluorescence.

Optical Rotation: [a]D20 -267° (acetone-methanol)

Absorption maximum: Absorption max (ether): 642, 593, 565, 545, 453, 427 nm Sparingly sol in petr ether, ligroin, cold methanol

Xanthophyll

CAS Registry Number: 127-40-2

CAS Name: b,e-Carotene-3,3¢-diol

Additional Names: lutein; vegetable lutein; vegetable luteol

Trademarks: Bo-Xan

Molecular Formula: C40H56O2

Molecular Weight: 568.87.

Percent Composition: C 84.45%, H 9.92%, O 5.62%

Literature References: One of the most widespread carotenoid alcohols in nature. Originally isolated from egg yolk, also isolated by chromatography from nettles, algae, and petals of many yellow flowers. Occurs also in colored feathers of birds: Volker, Z. Physiol. Chem. 288, 20 (1951). Extraction from petals of Tagetes patula L., Compositae: Karrer et al., Helv. Chim. Acta 30, 531 (1947). Occurs together with zeaxanthin, q.v. Dipalmitate occurs in Helenium autumnale L., Compositae and other flowers: Kuhn, Winterstein, Naturwiss. 18, 754 (1930). Conversion to zeaxanthin with sodium alcoholate: Karrer, Jucker, ibid. 266. Does not possess vitamin A potency: Schumacher et al., Poultry Sci. 23, 529 (1944). Stereochemistry: Zechmeister, Chem. Rev. 34, 267 (1944). Structure: Karrer, Helv. Chim Acta 34, 2160 (1951). Abs config: Goodfellow et al., Chem. Commun. 1970, 1578; Buchecker et al., Chimia 25, 192 (1971); eidem, Helv. Chim. Acta 57, 631 (1974). Synthesis: H. Mayer, A. Rüttimann, ibid. 63, 1451 (1980). Sepn and determn of configurational isomers: A. Rüttiman et al., J. High Resolut. Chromatog. Chromatog. Commun. 6, 612 (1983). Reviews: Zechmeister, Carotinoide (Berlin, 1934); Mayer, The Chemistry of Natural Coloring Matters (New York, 1943); Karrer, Jucker, Carotenoids (New York, 1950).

Properties: Yellow prisms with metallic luster from ether + methanol, mp 190° (corr), (a higher mp indicates impure material). Also reported as mp 183° [Buchecker (1974)]. [a]18Cd +165° (c = 0.7 in benzene). Absorption max (dioxane): 481, 453, 429, 333, 268 nm (e 142000, 152000, 100000, 15500, 35000). Insol in water, sol in fats and in fat solvents. More sol in boiling methanol (1:700) than zeaxanthin.

Melting point: Yellow prisms with metallic luster from ether + methanol, mp 190° (corr), (a higher mp indicates impure material); mp 183° [Buchecker (1974)]

Optical Rotation: [a]18Cd +165° (c = 0.7 in benzene)

Absorption maximum: Absorption max (dioxane): 481, 453, 429, 333, 268 nm (e 142000, 152000, 100000, 15500, 35000)

Derivative Type: Dipalmitate

Additional Names: Helenien

Trademarks: Adaptinol (Bayer)

Molecular Formula: C72H116O4

Molecular Weight: 1045.68.

Percent Composition: C 82.70%, H 11.18%, O 6.12%

Properties: Red needles from alcohol, mp 92°.

Melting point: mp 92°

La ringrazio moltissimo professoressa.  :-)