Chapter 2

Theories on the Liesegang Phenomena

Theoretical models of Liesegang rhythmic precipitation pattern formation
are reviewed and presented. Even though many scientists speculated on this
subject for a century and different theories have been tailored, so far, no
single theory of periodic precipitation seems to be able to account for ull
the observed features of the phenomenon. There is still disagreement as to
the mechanisms underlying the patterning. In view of the variety and
complexity of the phenomenon, the mechanisms responsible for these

structures are still under discussion.

2.1 Introduoction

The kinetics of Liesegang banding is generally very complex,
involving the coupling of diffusion and precipitation processes in non-
equilibrium regime. Many researchers have developed several theoretical
models for explaining the mechanism of this self-organized phenomenon
[1-13]. All the theories share the assumption that the precipitate appears as
the system passes through some nucleation or coagulation thresholds.
However, the theories differ on pre or post nucleation assumptions. The
main unresolved task in all the theories is that how the diffusive reagents

A and B turn into immobile precipitate P,
A+B—->Q0->P 2.1

where O is an intermediate reaction product, which is generally not well

known. The uncertainty about the intermediate compound and its dyramics
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is the basis for the existence of the number of competing theories and the

continuance of theoretical investigations on the kinetics of the process.

Most of the theories are based on Ostwald’s supersaturation model [14],
which considers band formation as a spatially discontinuous nucleation
process. According to the promoters of this theory, the outer electrolyte A
and the mner reactant B turn directly into precipitate P and there is no
intermediate compound formation in between A, B and P. Nucleation of the
precipitate P occurs when the local product of the ion concentration C4Cp
reaches some threshold C*, the so called solubility product which is a
thermodynamic parameter of the reactive system. Since the process is
diffusion limited (reaction time is negligibly small in comparison with the
diffusion time), precipitation results in the depletion of the local level of
supersaturation to the extent that no further nucleation becomes possible. As
the reaction front proceeds further into the medium, the concentration
product eventually attains the threshold level and the nucleation of the
precipitate is triggered again. Repetition of this sequence results in the
tormation of periodic precipitate patterns. Morse and Pierce [1], Wagner [2],
Prager [S5] and others developed mathematical model s based on this

concept of supersaturation of ion-product.

In another scenario [9,15], the two species A and B react to produce
a new intermediate compound @ and the mechanism of band formation is
based on the supersaturation of the intermediate compound. It is assumed
that @ also diffuses in the gel. The nature of Q is not clearly specified; it
may be a molecule or a colloid particle. When the local concentration of
reaches some threshold value, nucleation occurs and the nucleated particles

P act as aggregation seeds. The Q particles near P aggregate to the existing
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droplet (hence become P), provided their local concentration is larger than
a given aggregation threshold. Two thresholds, one for nucleation and one
for droplet growth characterize these models. The depletion mechanism 1s
stmilar to the one described for the ion product theory and it leads to band
formation. This theory is generally referred as the theory of nucleation and

droplet growth [13].

The other often-applied theory is the induced sol-coagulation theory [6].
According to this model, the intermediate compound @ is assumed to be a
sol and this sol coagulates if the following two conditions are satisfied.
First, the concentration of @ exceeds a supersaturation threshold and
second, the local concentration of the outer electrolyte C, 1s above a critical
coagulation threshold C4*. When the concentration of the outer electrolyte
reaches the critical coagulation concentration, stability of the sol vanishes
and the sol particles will aggregate. Because of their large size they will not
be able to move in the network any more. The band formation, according to
this theory, is a consequence of the nucleation and growth of the precipitate
combined with the motion of the front where Cy = C4*. At the place of the
coagulation, a visible precipitation zone will appear. Around the zone,
concentration of the sol particles decrease, which causes slow diffusion of
the sol towards the precipitated zone. This leads to the formation of a
depleted zone around the precipitate band where the formation of the sol
particles can continue but the sol concentration will be too low for
coagulation. This means that an alternating pattern of stable and coagulated

precipitate will form.

From an experimental point of view the main difference between

the supersaturation theory and sol coagulation theory is the distribution of
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the precipitate. According to the supersaturation theory, areas between
precipitate zones are really empty or they do not contain precipitate at all.
Against this, the sol-coagulation model leads to a continuous precipitate

distribution. The zones between bands contain a very dilute stable sol.

Many researchers have dedicated much effort in developing a
comprehensive unified model to explain all the observed spatial and temporal
arrangements of Liesegang patterns. However the complexity and sometimes

chaotic nature of this phenomenon have somehow obstructed it [16].

2.2 Morse and Pierce model

Shortly after the discovery of Liesegang rings, Morse and Pierce [1]
discussed their formation by studying the diffusive behavior of silver ions
into a gel containing uniformly mixed chromate ions to form silver
chromate precipitate. They obtained the physical conditions of the process
by the straightforward analysis of Fick’s diffusion equations for the outer
ions (A) and the inner ions (B). Their mode! assumes an inexhaustible
reservoir of A tons and a diffusion process undisturbed by the band
formation. In the problem of formation of precipitate bands, for simplicity,
the two tons are considered to be diffusing from opposite sides and forming

the precipitation band at x = x; (Figure 2.1).

x=0 X=X X—>

Figure 2.1: One-dimensional diffusion of 4 ions into a gel impregnated with B ions.



Theories on the Liesegang Phenomena 31

Fick’s second law for outer and inner ions, respectively, is

oC, 9°C,
-D,
ot ox (2.2)
2
oC, _Dp, 0 C';j
ot ox (2.3)

where C, (x,f) and Cp (x,f) are the outer and inner ton concentrations. Dy
and Dg are the diffusion coefficients of the outer and inner ions in the gel
medium. Since the reservoir ion concentration is large enough,
Ca (x,1) = Cao for x < 0 at all times will be a good approximation. Also at
t =0, Cp(x,1) = Cpo for all positive values of x and Cy (x,¢) = O for all
negative values. With these boundary conditions, the solutions of the

differential equations 2.2 and 2.3 are

C (x,6)= 2%0 Jeuﬂzdﬁ
7 sn2ibg (2.4)

o]

Cylx,1)= 3@ [e* ap
4 x12 Dyt

(2.5)

where 3 is a variable of integration. For the formation of precipitate at

X = x;, the supersaturation product shall exceed a critical limit. Morse and

Pierce stated this condition as

2
2 - -
c*:c;cfh{_fm J[f*dﬂH Ie‘ﬁzdﬁ} 2.6)
/2 12Dy x/2Dyt

If C¥ D4 and Dy are constants, from equation 2.6 it follows that

X
— = Constant (2.7)
Jt
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and is found to be independent of Cag and Cgo. This conclusion, as we
discussed earlier, is the time law, which is confirmed experimentally by
many investigators [1,17-20]. Other characteristic equations of Liesegang
phenomenon can also be derived [3] from this condition or directly from

the diffusion equations [2].

Morse & Pierce model could not explain the successive ring formation.
Since the number of 1ons incorporated in the gel 15 limited, immediately after
the formation of the first ring, the concentration leve] of the B type ions is
reduced to a low value. The model also does not give any explanation for the
concentration contour distortion by ring formation. The time of formation of a
nng has been interpreted as the time by which a critical supersaturation is
reached n the region. Hence the cntical supersaturation is a necessary and
sufficient condition for the formation of the ring. Though this model has all
these shortcomings, many of the researchers after Morse and Pierce followed

the same path in dealing with the problem.

2.3 The Wagner model

In spite of contrary opinions of some authors, Wagner [2] considered
the Ostwald’s supersaturatton theory as an ideal tool for explaining the
periodic precipitate band formation. According to Wagner the supersaturation
condition and the existence of a meta stable concentration limit for the
formation of nuclei play an important role. He carefully studied the sitvation
keeping in mind all the above concepts and solved the problem by a
straightforward mathematical analysis of the diffusion processes and by
considering the concentrations as functions of time and distance. The whole
space is divided into two regions in which either A type ions or B type ions are

prevalent and accordingly the concentration of the other component is
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negligible. The precipitation is expected at x = x;, where the two types of ions
diffusing in opposite directions encounter each other. Morecover Wagner
suggested that at x = x; the diffusion rates are equivalent with opposite signs.
To avoid lengthy expressions he also assumed that the diffusion coefficients of

the two 1ons are equal and thus may be designated by the common symbol D.

Hence at x = x|
oC, 3C

=+D—L
ox ox (2.8)

-D

In the region x < x, A type ions are prevalent and their consumption
by the precipitation reaction can be practically disregarded. The second

Fick’s equation for the A ions can be written in the usual form for x < x; as

aC, _ D82CA
ot ox’ (2.9)

and likewise for B ions for x > x;

9Cs _ 9°Cy
ot ox’ (2.10)

The imitial conditions for concentrations, as referred to above are
Ci=Cio at x<Qand =0
Cpg=Cpy at x>0and =0 (2.11)

With these initial conditions and the additional condition in equation 2.8,

the solutions of Fick’s differential equations 2.9 and 2.10 can be obtained.

Forx < x(
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P

| X
CA :‘“(CAG _Cﬂu)_—(cAo+CBu)€’f[ lr—-]
Forx > x,
Cu = "l(CAn o CBO)+i (Cw + Cao)e’:f‘[#]
2 2 24Dt
(2.13)
Setting C4 = 0 in equation 2.12 and Cp =0 in equation 2.13 at x = x;
X
1- erf( ' W
Cpo _ \2vDt )
Cao [ A }
| +erf '
24/ Dt (2.14)
Introducing a new variable
X
N
2 Dt (2.15)
Cao _ L—erf(y)
Cy 1+erf(y) (2.16)

Thus the distance of formation of the bands can be set as a function of
(Cgo/ Cao). For Cgg << Cap, which is the situation in the actual Liesegang

experiment, the following approximations can be made fory > L.5

1
l—erf (y)= ﬁyexp(_f) (2.17)

1-erf(y)=2 (2.18)
Upon introduction of equations 2.17 and 2.18 in equation 2.16

Ca
Cao

1
= - 2.19
> ,—MeXP( & (2.19)

which yields Cgo/ Cho < 0.02 if y > 1.5
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The concentration of both the ions as functions of distance x from
the boundary of the original solutions are shown in Figure 2.2. Since
Cao>> Cpo, the A type ions diffuse into the region x > 0, initially occupied
by B type ions. After a given time the precipitation zone extends from x =0

to x = x;, and the characteristic distance x; varies as the square root of time

according to the relation

x,=274Dt (2.20)

Figure 2.2: Concentration distribution of 4 and B type ions as functions of the

distance x from the gel - solution interface according to equations 2.12
and 2.13.

Even though a continuously advancing precipitation zone is assumed,
Wagner suggested that equation 2.15 also applies approximately to periodic
precipitations as first shown by Morse and Pierce [1]. Wagner considered
periodic interruptions as small perturbations in the general diffusion processes.
If the concentration of a solution is only slightly greater than the saturation
concentration, the rate of formation of the nuclei 1s very small but rises
considerably with increasing supersaturation. The formation of the nuclei takes
place only if the supersaturation exceeds a certain ‘meta stable limit’. Once

this hmit is achieved, the precipitation zone or the nuclei of the crystal can
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grow into the medium in the direction of x - axis with a rate corresponding to
the increase in x according to the equation 2.15. No attempt will be made here
to reproduce fully the Wagner’s mathematical derivation, but his qualitative

description of the process is given.

As shown above we have C4 = Cg = 0 at the end of the precipitation
zone at x = x; [Figure 2.3(a)] and according to equation 2.8 the diffusion rate
of A ions in the positive direction of the x-axis equals that of B ions in the
negative direction. If nuclei are missing in the region x > x,, the precipitation
no longer can advance for reasons indicated above. Since the curve Cy (x) is
concave upward, the concentration C, (x) increases in the course of time;
conversely, the curve Cp (x) is concave downward, and accordingly the
concentration Cg (x) decreases. Thus more A ions than B ions arrive at x = x,
and consequently, A ions enter the region x > x; as shown in Figure 2.3(b).
According to the continuing precipitation and consumption of A ions at x = x|,

there is a discontinuity for the curve C, (x) at x = x;.

In the region x > x;, a new precipitation zone is formed only if the
supersaturation product is reached. The position of the beginning of the new
precipitation zone can be obtained by determining the position at which the
product of the concentrations as a function of time is maximum and then by
finding the position x; + &x; at which the maximum of the concentration
product equals the supersaturation product. Immediately after the formation
of new nuclei, B ions are prevalent and thus the concentration of A ions
decrease practically to zero as indicated in Figure 2.3(c). Later on, the
diffusion rate of A ions arriving at x, + 8x; increases and conversely that of
B ions decreases until the diffusion rates of A and B ions are equivalent.

Thus conditions similar to the initial conditions are reached, as indicated by
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Figure 2.3(d). In this manner a large number of distinctly separate
precipitation zones can be formed. In contrast to Figure 2.3(a), 2.3(d)
shows a small concentration of A ions in the region beyond the new

precipitation zone at X > x; + 0x, but this difference may be disregarded.

a G, (%) CB(x)
xl X —+
C .
b | C,®)
xl X —
G, ()
¢ C )

X, X+0x, X—

Figure 2.3: Concentrations of A and B type ions as functions of the distance at different
times after the formation of a quasi-continuous precipitation zone.

Wagner also calculated the expression for the distance between
consecutive precipitation zones. The distance dx, between consecutive

precipitation zones is found to be proportional to the distance x, from the
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boundary of the original solutions and has been verified empirically by
several investigators [21-23]. One important aspect reflected in this theory
is the dependence of ring spacing on the concentration of the outer and
inner electrolytes. The ratio 0x,/ x, is found to be inversely proportional to
the [(Vs+ vg)/ Qva+ vg)]™ power of the initial concentration Cyqor Cyy if
the ratio of the concentrations Cap/ Cao 18 kept constant. Here v, and v are
the number of ions of A and B contained in the virtually insoluble
precipitate. The distance between two consecutive precipitation zones is
greater when the solutions are more dilute. If C40>> Cpy, the characteristic
ratio dx,/x, depends slightly on the concentration C4o provided the
concentration Cpp is kept constant. In such a situation the ratio d&x,/x, is
found to be almost inversely proportional to the [(vi+ va)/ (2va+ v )]‘h

power of the initial concentration Cpgy.

The relations 2.8, 2.9, and 2.10 are found to be in accordance with
many experiments reported in the literature. In view of the muitiplicity of
the approximations made in this theory and complexity of the experimental
set up, Wagner himseif admitted that this model was not suitable to all

systems.,

2.4 The Prager model

The mathematical formulation of the problem of periodic
precipitation developed by Prager [5] essentially follows Wagner’s theory
with two important exceptions. The first simplification is that the
precipitation removes only a negligibly small amount of A, so that the
concentration C, remains virtually unaffected. A sufficient condition for

this to be true is that
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Cpy << C ¥/Watv3) (2.21)

It is casily seen that if the inequality 2.21 is satisfied, then Cs >> Cs
wherever precipitation is occurring or about to occur. Prager solved the

usual diffusion equation 2.2 subject to the conditions

Ca(0.0)=Cao (2.22a)
Ci(x0) =0 (2.22b)

and the result is the familiar equation

C.(x,t)=C, erfc

/2
(4D,) (2.23)
The boundary conditions for the diffusion of B ions are
Cp(x,)=0 (2.242)
Cp(x,0) = Cpo (2.24b)

Prager introduced a zone extending from x = 0 to x = xo which inttially
contains neither A or B. Thus, while the initial distribution of A given

by equation 2.22b is still valid, equation 2.24b must be replaced by

Cp(x,0) =0 for x < xy

Cp{x,0) = Cgq for x > xp (2.24¢)

To further simplify the matter it is supposed that B is prevented from
entering the region x < xg say by a semi permeable membrane, although A
18 assumed to diffuse freely. This means that the distribution of B will not
change at all until ¢ = t;. When A reaches the critical concentration at x = xp
at time fq, the concentration of B at xy drops abruptly from Cgy to 0, and is

maintained there for all ¢ > #. Accordingly Cg (x,f) is obtained by solving

2.3 and is given by
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C,(x,t)=Cpperf
- [4Da (I_fo) v (2.25)

until precipitation occurs at some point other than x = xo. Combining 2.23

and 2.25 Prager obtained the solubility product as

. X 1 X—X a
K(x,t)=C, " C," — ° .
e | =

Introducing the conditions v4 = v = | and Dy = Dp, Prager showed that
precipitation will occur again at the point x = x, and time ¢ = ¢, where the
solubility product reaches C* for the second time. By solving the following

equations, x, and ¢, can be found out.

K(I,f)-_- C* (227)
CLSP
ox (2.28)

This procedure can be extended to give the positions of the
subscquent bands as well, for which the new boundary conditions on

equation 2.3 are given by

1)=0 (2.29)

-1/ 1 1 n—-]) (2.30)

These relations represent the x - ¢ dependence of Cg for £,. £ ¢ < ¢, and
X 2 Xxn. Replacing equation 2.26 by the more general relation and

solving, Prager obtained the values of x,/ x,.; and 1,/ £,.. These values
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were found to be in agreement with the data of Morse and Pierce on

silver chromate bands.

2.5 The Keller and Rubinow model

Keller and Rubinow [7] have proposed a model, which includes a
sink term in the diffusion equations for the ion concentrations. As discussed
earlier, the reactants A and B can react to form a product Q that can form a
precipitate P. The reaction rate R (Ca,Cp Cp ) 1s a function of the molar
concentrations Cy (x,1), Cp(x,0), Cy (x,1) of A, B and Q respectively. If the
reaction 1s of orders vy in A, Vpin B and vp in @, then the law of mass

action yields
R=k,CPCr —k.CS (2.31)

Here k., and k_are the rate constants for the forward and backward reactions
respectively. Precipitation of @ i1s assumed to begin only when its
concentration exceeds a certain supersaturation concentration. Once the
precipitation has begun it can continue as long as the concentration is above

the saturatton concentration.

In addition to reacting, A, B, and Q ecan diffuse, while ¢ can also
precipitate. Thus Cu (x,0), Cp (x.0), Cp (x,f) satisty the reaction-diffusion-

precipitation equations:

2
o _p ICu_, g
ot ox (2.32)
9C, .. 2°C,

=D, =2 _y,R
ot ox? i (2.33)
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aC, 3’C,
?—_—DQ—EEZ—‘?‘VQR—PJ, (2.34)

According to Keller and Rubinow P does not diffuse, so its concentration

Cp (x,f) will be connected to the precipitation rate P, by the equation:

oC,
ot

P (2.35)

The boundary conditions are

Ca=0, Cp=Cpr, Cp=0, Cp=0 at t=0, x>0 (2.36)

oC oC
Ci=Cho, —2=0, ¢
A A0 ox ox

=0 at >0, x=0 (2.37)

This 1s equivalent to a tube initzally containing B but not containing
A, Q or P, with a supply of A located at x = 0. The problem is to solve
equations 2.32 to 2.37 for Ca, Cp, Cp and Cp in x > 0, t > 0. Then, the
regions in which Cp> 0 when ¢ is large will be the zones or bands, which

we wish to find.

To make a heuristic simplification of the problem, Keller and

Rubinow incorporated four approximations viz.,

(1) The reaction process is fast compared to both diffusion and

precipitation. As the reaction is assumed to be fast they set R=0.

(11) Cuo, the concentration of A at the end x = 0, is very large compared

to the concentration of Q.
(iit) The diffusion coefficient Dy = Dy

(V) Vo= v
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and the conditions under which recurrent precipitation resulting in rings or
bands were determined. The location and time of formation of the »™ band

was calculated analyzing the two conditions formulated:

C,(x,.t,)=C* (2.38)
|
Gy (2.39)
ox o

Keller and Rubinow obtained the conditions as:

T o) 1 = C* 2.40
erf[z D(t ~t }[k"e»fc“”[xn/z,/r: ]+1] (240)

Itr: B (xn B xn—l )2 ¥ v xﬂ' xll
Dl 1, ‘”“{ an(, )]{" e ”}’f"[z\/z J

(2.41)
P
—X X =X
—vex " le LA =0
p{ 4t" } ,f|: 2'\/D(tn “r}l—] )]

where

K =k, CAC2™ k., v= v/ Vs and D = Dy/ D,
Equations 2.40 and 2.41 have a solution of the form [7]:

_ -l
X, =H X5 (2.42)
¢ =ty (2.43)

The result 2.42 shows that

Xpui] X, = 1 (2.44)
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which is just the experimentally well-known spacing law [2]] of Liesegang

bands. From equation 2.43 if p=x, /2:‘1"’2 it follows that
12 _
%, [6] =2p (2.45)

and this is the time law discovered experimentally by Morse and Pierce | 1].

Thus incorporating the processes of reaction, diffusion and
precipitation Keller and Rubinow successfully deduced the space and time
laws of Liesegang bands. They showed that the ratios x,+;/ x,, and x,/ t, "2

are constants for sufficiently large n values.

The difficulty with the pure diffusion theones is their inability to
explain why a precipitation zone stops growing. Wagner recognized that a
band of precipitation, once started, would continue growing as a single
band without stopping. To make it stop, he assumed that the nuclei
necessary for precipitation were confined to a zone of finite width. Then he
had to assume that there were other finite width zones of nuclei at the
locations of the other bands. In Keller- Rubinow theory, it is taken that the
first band automatically grows at a decreasing rate and finally stops
growing. The qualitative explanation of this is that diffusion of the reactant
B and the product @ into the band depletes their concentration in the
neighborhood of the band. Consequently, the concentration of @ cannot
reach the supersaturation value there, so the precipitation band cannot grow
further. A new band can start to form when the reactant A has diffused out

into the region where B has not been appreciably depleted.

2.6 Dee,LeVan & Ross models
In the scenario suggested independently by Dee [3] and LeVan and

Ross [24], the two species A and B react to produce a new species Q that
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also diffuses. When the local concentration of this new spectes reaches
some threshold value, nucleation occurs. The nucleated particles P at the
reaction front deplete their surroundings of the reaction product. As a
result, the level of supersaturation drops dramatically and the nucleation
process stops. After some time, the reaction front has moved away and the
concentration of product at the moving front reaches a large enough value,

allowing the nucleation to occur again, and separated bands will appear.

This process is described in terms of rate equations for the local

densities of A, B and ). In appropriate units, they are written as

oC, 9°C

5 o KCCa (246

C, D, dC

a:ﬂ = Ds asz ~-kC,C, (2.47)
A

oC, D, dC

arf-’ = DQ axf +kC,Cy~u (2.48)
A

where D4, Dy and Dy are the diffusion constants for the species A, B and
respectively, k is the reaction constant and  the nucleation and aggregation

term. Because of diffusion, the reaction front position x; (f) obeys the

relation
x, (1)~ t (2.49)

with an amplitude depending on the ditference of the concentrations C4 and
Cg [25].

In both the studies it was assumed that the nucleated particles are
spherical and remain so as they grow. The growth rate 1s proportional to the

supersaturation [24]. It is also assumed that the particles are immobile in the
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gel medium and their growth is interface controlled. Thus, the growth of the
droplets by coagulation is not included. Dee [9] and LeVan and Ross [24]
used different expressions for «, obtained from the theory of homogeneous
nucleation and droplet growth. LeVan and Ross investigated the problem
using two assumed nucleation rates; one they labeled as ‘discontinuous’ for
which the nucleation rate is zero up to a critical supersaturation and then
rises, The second nucleation law labeled ‘continuous’ is similar to the
classical nucleation theory. Dee used the second nucleation law. The system
of coupled non-linear partial differential equations obtained by the inclusion
of u when solved numerically, exhibit oscillatory solutions for the density of
precipitate, and are interpreted as bands. The solutions obtained are found to

be consistent with experimental observations.

According to the investigators [9,24] Ostwald ripening only affects
the intra-band morphology at later stages of the evolution and hence plays
no role 1n the initial formation of the pattern. The charactenstics of the
reaction zone influence the details of the patterns formed. In particular, the
width of the reaction zone affects both the band spacing and the bandwidth.
It is seen that for higher values of %, a larger number of narrower bands are
obtained. They also observed precipitate material between the bands and in

front of the leading band.

2.7 Dhar, Shinohara models

The ‘coagulation theory’ presented by Dhar [26], though
qualitative, seems to be effective in explaining many unresolved facts of
periodic pattern formation. According to Dhar, the substance to be
precipitated is produced first as a collotdal solution and the precipitation is

due to the flocculation of the sol by the addition of electrolytes. Later,
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proceeding along the same line, Shinchara [6] divided the mechanism of
the phenomena into three stages viz., the sol-forming stage, the flocculation
stage and the stoppage of flocculation. According to him, three stages
proceed one after the other, in turn, forming the rhythmic pattern of

precipitates.

When the outer electrolyte diffuses into the gel impregnated with
the nner electrolyte, the inner one diffuses in the opposite direction. The
reaction occurs only on the boundary and there remain reaction product as a
sol and the parasitic substance. The movement of the boundary is assumed
to be along the positive direction of x. The concentration of the two
electrolytes is also taken to be zero at the boundary. The movement of the
boundary is assumed to be along the forward direction, leaving a sol region
behind. Shinohara named the boundary as the ‘sol front’. The concentration
of the outer electrolyte varies with x from the largest value Cqp at the origin
to zero at the front. Flocculation occurs suddenly when the total ionic
concentration at the end of the sol region exceeds a characteristic value, the
flocculation value of the sol. The flocculation causes the liberation of
charges from sol particles. A sudden ionic change due to flocculation at the
end of the sol region stimulates the adjacent layer of sol and induces a new
flocculation, and the latter stimmlates another layer of sol, and so on. The
advancing speed of flocculation front is very large compared to that of the
sol front. At the moment when the flocculation front arrives at the sol front,
flocculation stops because there is no more sol particles to flocculate.
A new sol region spreads from the point where the preceding flocculation
stopped. After a lapse of time a new flocculation front will start from this

point. There must be clear intervals between adjoining flocculation regions,
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for the sol substance in these places are carried off by diffusion. This is
why striped pattern of precipitate is observed. Shinohara deduced and fully
explained the time and spacing laws from the assumption of the constancy

of the speed of flocculation.

2.8 The Spinodal decomposition scenario

In Liesegang experiments, once the patterns are formed they appear
to be in quasi-steady states or said to be frozen [27-30]. (There are reports,
which suggest that the pattern does not change even for a 30-year period
[31]). This fact suggests that a phase separation occurs during the formation
of bands. The picture of the bands can also be taken as an evidence of

phase separation [28].

In the discussion of the mechanism of spinodal decomposition for
the formation of Liesegang patterns, the interpreters of the theory restricted
themselves to the intermediate compound theories, According to them, as a
result of the A+B—( reaction-diffusion process, a moving reaction-
diffusion front is present and an intermediate compound @ of constant
concentration ¢g is formed. The intermediate particles  can move only by
diffusion due to the presence of the gel. Small clusters of particles nucleate
at and aggregate behind the front. The characteristic time scale for
nucleation is much larger than the time needed by the front to put out the
local concentration cp, then the system reaches the unstable state, and phase
separation or Liesegang band formation takes place on a short ime scale.
This band acts as a sink for the particles and, in the vicinity of the band the
local concentration of the particles decreases and the front is no longer in
the unstable region of the phase space. When the front moves far enough,

the depleting effect of the band diminishes. Thus the concentration of the
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particles grows and the process repeats. The repetition of the process leads

to the formation of regular Liesegang patterns.

A more familiar and easily understandable description of the
problem was formulated in terms of a spin—half kinetic Ising model with
competing spin flip and spin-exchange dynamics [32]. Empty and occupied
lattice sites are associated with down and up spins respectively. One starts
from the empty state where all the spins are in the down state (no Q
particles present). The moving front flips the down spins at a given rate
producing a local magnetization (thus producing the (@ particles). This
process can be described by Glauber dynamics [33] while a spin exchange

processes or Kawasaki dynamics [34] describes diffuston.

Tc
metastable
- S'
L3 ®
| I
| 1
| I
' ]
) |
| 1
I ]
| |
H i
]
0 i
-1 -m -m, m. B0 1
® ' ° m=2¢~1

Figure 2.4: Qualitative phase diagram for the Ising model. The magnetization m is
related to the density ¢ of the intermediate particles through the relation
m = 2¢ -1. The solid line is the coexistence curve and the dotted line is the
spinodal line. S; is the initial state with m = —1, £ m, are the equilibrium
magnetizations at a given temperature T while + m; are the
magnetizations at the spinodal line,



50 Chapter 2

To explain qualitatively how bands emerge, Antal et. al. [27]
considered the phase diagram of an Ising model depicted in Figure 2.4. One
starts from a state with all the spins down (S§; in Figure 2.4). The A+B—Q
reaction front leaves behind a constant density ¢, of Q particles, thus
commespondingly the spin-flipping front produces a local magnetization
mp = 2co— 1. Since the front should bring the system into the unstable state,
it is assumed that m, > — m,. As time evolves, the local state moves trom §;
towards Sp. The system crosses successively the coexistence line (m =—m,)
and the spinodal line (m = — m,) and end up into the unstable states domain
where phase separation takes place. Thus a spin-up domain or a band is
rapidly formed at or behind the front. This mechanism is possible because
the time scale for nucleation 1s much larger than the time needed by the
front to put the system in the unstable states domain. The new band formed
acts as a sink for the up-spins in its vicinity. Thus the local magnetization
decreases and the front is no longer in the unstable domain. However, when
the front has moved far enough, the depleting effect of the band disappears.
The front can bring again the system into the unstable domain and a new
band is tormed. In short, the new feature of this scenario is the assumption
that the state of the front is quasi periodically driven into the unstable states
domain. Droz studied the properties of this model at a microscopic level
and explained the experimental patterns obtained in long test tubes. This
model also yields Matalon-Packter law and allows the calculation of the

spacing coefficient.

2.9 Conclusions
Even though important theoretical progress has been made towards

the understanding of Liesegang phenomena, one has to recognize that the
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suggested scenarios cannot explain all the experimental observations and

conditions related to the formation of patterns. There is still disagreement

amoung researchers with regard to the mechanisms underlying this

phenomenon. Also several challenging problems remain open in this

fascinating field of pattern formation in non-equilibrium systems. Hence the

mechanisms responsible for these structures still stimulate research [35-60].
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